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INVITED PAPER
PROJECTION PURSUIT?

By PETER J. HUBER

Harvard University

Projection pursuit is concerned with “interesting” projections of high
dimensional data sets, with finding such projections by machine, and with
using them for nonparametric fitting and other data-analytic purposes. This
survey attempts to put the fascinating problems and ramifications of projec-
tion pursuit—which range from principal components, multidimensional scal-
ing, factor analysis, nonparametric regression, density estimation and decon-
volution of time series to computer tomography and problems in pure math-
ematics—into a coherent perspective
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I. Generalities on projection pursuit.

1. Introduction. Projection pursuit (PP) techniques were originally pro-
posed and experimented with by Kruskal (1969, 1972). Related ideas occur in
Switzer (1970) and Switzer and Wright (1971). The first successful implemen-
tation is due to Friedman and Tukey (1974), who also coined the catchy name.

The original purpose of PP was to machine-pick “interesting” low-dimensional
projections of a high-dimensional point cloud by numerically maximizing a
certain objective function or projection index. In its Friedman-Tukey form, this
index was the product of a robust measure of scale (trimmed standard deviation)
with a measure of clumpiness (a weighted count of the number of close pairs).

After a dormant stage of several years, Friedman and Stuetzle extended the
idea behind PP and added projection pursuit regression (PPR: Friedman and
Stuetzle, 1981), projection pursuit classification (PPC: Friedman and Stuetzle,
1980) and projection pursuit density estimation (PPDE: Friedman, Stuetzle and
Schroeder, 1984).

The most exciting feature of PP is that it is one of the very few multivariate
methods able to bypass the “curse of dimensionality” caused by the fact that
high-dimensional space is mostly empty. For example, assume that a large number
of points is distributed uniformly in the 10-dimensional unit ball. Then the radius
of a ball containing 5% of the points is (0.05)*! = 0.74. This implies that kernel
smoothers and similar methods will not be able to pick up small features, unless
the sample size is gigantic. PP avoids this problem by working in low-dimensional
linear projections. The price to be paid is, of course, that PP is poorly suited to
deal with highly nonlinear structures (but kernel smoothers are not a viable
alternative either).

In addition, the more interesting PP methods are able to ignore irrelevant (i.e.
noisy and information-poor) variables. This is a distinct advantage over methods
based on interpoint distances like minimal spanning trees, multidimensional
scaling and most clustering techniques. These latter methods also avoid (at least
to a certain extent) the curse of dimensionality, but all of them can be derailed
by noninformative variables.

Many of the methods of classical multivariate analysis turn out to be special
cases of PP. Examples are principal component and discriminant analysis, and
the quartimax and oblimax methods in factor analysis.

PP emerges as the most powerful method yet invented to lift one-dimensional
statistical techniques to higher dimensions. To give a simple example: if we take
the 2-sample t-statistic as our projection index, then PP searches for the best
discriminating hyperplane in the classical, Fisherian sense. If we replace the
t-statistic by a robust 2-sample test statistic, we obtain a robust version of
discriminant analysis.
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The only known affine equivariant estimators of multivariate location and
scatter with high breakdown point (i.e. approaching %% in large samples) are based
on PP ideas (Stahel, 1981; Donoho, 1982).

PP methods have one serious drawback: their high demand on computer time.
We may say that PP became both needed and feasible through the advent of
inexpensive high-speed computing, and this may explain its simultaneous, mul-
tiple invention around 1970.

Among the more remote ramifications of PP, one should mention computer
tomography (CT): both PP and CT are concerned with the efficient reconstruc-
tion of higher dimensional structure from lower dimensional projections, and
there are interesting possibilities for cross-fertilization.

Furthermore, there is an amusing connection between PPR and Hilbert’s 13th
problem, whose solution, the celebrated Kolmogorov-Arnold-Kahane theorem
(see Vitushkin, 1978, page 27 f.), becomes relevant if one should want to do PPR
with nonlinearly transformed variables.

2. Why projection pursuit? If we want to check a low-dimensional data
set for the possible presence of some unspecified, unanticipated structure, then,
as we all know, the most effective approach is to draw pictures—histograms in
one or two dimensions, scatterplots in two or three dimensions.

While it is possible to encode several more dimensions into pictures by using
time (motion), color, and various symbols (glyphs), the human perceptual system
is not really prepared to deal with more than three continuous dimensions
simultaneously.

The trouble lies with the dimensionality, not with the method of encoding.
This is shown by the empirical fact that we find it easy to transpose two space
and one time dimension into three space dimensions (as in kinematic graphics),
and we can also perform such a transposition, although less easily, with two
space and one color dimension (as with cartographic maps).

Procedures for dealing directly with four or more dimensions, coding the fourth
dimension by color or by time (slicing, masking, cf. Tukey and Tukey, 1981),
seem to work well only if the data are either clustered in such a way that the
superb power of color for encoding categorical variables bears fruit, or if the data
set is essentially three-dimensional, so that slicing the data with regard to one
variable cuts two-dimensional sections through the space spanned by the other
three variables.

Thus, if we want to put the human ability for essentially instantaneous pattern
discovery to good use with four and higher dimensional data, we should first
reduce the dimensionality. For obvious reasons, we shall usually want to look
first at the projections onto the spaces spanned by one, two or three of the
coordinates. But it seems that few people muster the patience and concentration
for a careful scrutiny of all (¢) and (¢) scatterplots of pairs or triples of variables,
if the dimension d is larger than about 10 or 7, respectively.

If we want to consider arbitrary one- to three-dimensional linear projections,
the problem gets even worse. When we rotate a point cloud in three-space in
order to view its two-dimensional projections, then the “interesting” features
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often are recognizable only over a relatively narrow range of “squint angle”
(Tukey and Tukey, 1981, page 215). In our experience, a rotation angle of about
10° to 20° may be typical, but for example the infamous planes produced by the
random number generator RANDU are visible only in a range narrower than 5°
(see Figure 2.1). This generator has the property that any three consecutively
generated uniform pseudo-random numbers satisfy x,+2 — 6x,+1 + 9x, = 0(mod
1), and thus the triplets (x,, X,+1, Xn+2) all lie on 15 parallel planes through the
unit cube.

A crude order-of-magnitude estimate based on a squint angle of 10° suggests
that we need to look at about 109! one-dimensional projections of d-dimensional
data, and at something like 10?*~* two-dimensional projections. The fastest way
for doing so is to rotate smoothly from one projection to the next (this is less
tiring and quicker, since we do not have to reoriept ourselves in each new
projection), and then we may inspect about one such projection per second. Thus,
a reasonably complete visual search in four dimensions (a “Grand Tour” in the
sense of Dan Asimov) takes about three hours. It is evident that an exhaustive
visual search is out of the question if d exceeds 4. Unless we are willing to rely
on happy serendipity, we need an automated procedure that ferrets out projec-
tions likely to be of interest to the data analyst. This raises the problem of how
to characterize “interestingness” in a numerical fashion.

Unfortunately, the squint angle argument applies also to machine search; we
cannot hope that automated exhaustive search will carry us more than two or
three dimensions beyond the limits set by human endurance.

Perhaps, more modestly, we should regard PP as a method to increase the
likelihood of finding interesting projections.
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3. Some concepts and definitions. We observe a sample, but we really
are concerned with elucidating an underlying structure. Thus, it is conceptually
convenient to separate PP into an “abstract” version which operates on
d-dimensional probability distributions (mostly densities) and a “practical” ver-
sion that is applied to samples (i.e. empirical measures or “point clouds”). The
two versions might be identical, but often the abstract version will work on
smooth distributions only; so, in order to translate it into a practical one we must
insert a suitable smoother at an appropriate place. For notational convenience,
we shall use random variable terminology. The letter X shall be used indiscrim-
inately for a point cloud, that is, an n-tuple of points (x;, - - -, x,,) in R, or for a
random variable with values in R? By ave{X} we shall equally, indiscriminately
denote either the sample mean (1/n) ¥ x; or the expectation E(X). Initially, we
shall be concerned exclusively with the abstract version and shall postpone
sampling questions.

A linear projection from R? to R* is any linear map A, or k X d matrix of
rank k:

Z=AX, XERY ZeER-:

We speak of an orthogonal projection if the row vectors of A are orthogonal to
each other and have length 1. '

If X is a d-dimensional random variable with distribution F, then Z = AX is
a k-dimensional random variable with distribution Fy4. If £ = 1, A reduces to a
row vector a”, and we use lower case letters F, etc.

In passing, we note that any d-dimensional distribution is uniquely character-
ized by its one-dimensional projections F,. This follows trivially from the fact
that F is uniquely determined by its characteristic function ¢ and that the
characteristic function y, of the one-dimensional projection F, in direction a
equals the section of { along the same direction:

(3.1) Ya(t) = E(e™™) = y(ta).

By definition, PP searches for a projection A maximizing (or minimizing) a
certain objective function or projection index Q(F4). We are specifically interested
not only in absolute, but also in local, extrema. While @ is a functional on the
space of distributions on R¥, we find it more convenient also here to use random
variable terminology and, by abuse of notation, to write Q(X) and Q(AX) instead
of Q(F) and Q(F,). Primarily, we shall be concerned with one-dimensional
projections, and for obvious representational reasons we shall rarely want to go
beyond three-dimensional projections.

II. Projection pursuit applied to point clouds—abstract version.

4. A classification of projection indices. We single out a few classes of
objective functions according to their invariance properties. For simplicity, we
consider only one-dimensional orthogonal projections, but the ideas generalize.

In the following, Z is a real random variable, while s, ¢t are (nonrandom) real
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numbers. We distinguish three classes of objective functions Q:

CrAss I. Location-scale equivariance:
Qi(sZ +t) = sQu(Z) + t.

CLAss II. Location invariance, scale equivariance:
Qu(sZ + t) = | s| Qu(2).

CraAss III.  Affine invariance:
Qu(sZ + t) = Qum(Z), s#0.

We note that the absolute difference of two Class I functionals is a Class II
functional:

|Qi(Z) — Q1(2) | = Qu(2),
and the quotient of two Class II functionals is of Class III:
Qn(Z2)/Q1(Z) = Qu(Z).

Let X be a d-dimensional random variable or point cloud. We note that both
the mean vector u = ave{X} and the principal components, i.e. the eigenvalue/
eigenvector representation of the covariance matrix = = ave{(X — u)(X — u)7},
can be captured by PP methods as follows.

EXAMPLE 4.1. Let Q = ave. This is Class I functional; Q(a”X) = ave{a”X}
with || a| = 1 is maximized by ao = /|| ||, and the value at the maximum is
Q@fX) = | n|l. Hence we may define the d-dimensional mean u via PP as

a0Q(ai X).

EXAMPLE 4.2. Let @ be the standard deviation, that is,
Q(a"X) = [ave{[a"(X — W)*}]/?,

with || a | = 1. This Q is a Class II functional; the maximum value of this objective
function is the largest singular value of X (i.e. the square root of the largest
eigenvalue of ), and it is reached at any eigenvector belonging to this eigenvalue.
The other eigenvalues and eigenvectors can be found successively by restricting
@ to the orthogonal component of the space spanned by the previously found
eigenvectors.

Class I functionals are one-dimensional location estimators, and PP with a
Class I functional ; will yield a kind of d-dimensional location estimator in a
manner analogous to Example 4.1. We said “kind of” because the resulting
estimator in general is neither uniquely defined nor location equivariant. In
somewhat more detail this works as follows. Let X be given. Assume that a, €
R?, with || ao | = 1, maximizes @(a”X). Put T(X) = ap@Q(ad X).
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PROPOSITION 4.3. The functional T is uniquely defined and location equivar-
iant for the translation family generated by X:

TX+t)=TX)+t foral t€ER?
iff there is a u € R? such that
(4.1) Q@™ X —p) =0 foral a€ R4

and then T(X ) = u. Condition (4.1) holds in particular if X is centro-symmetric
about u (i.e. if X — u and —(X — p) have the same distribution).

PrOOF. If X is centro-symmetric about u, then Z = a”7(X — p) is symmetric
about 0, and

Q(=2) = —Qu(Z) = Q(Z) = 0,

which establishes the last assertion of the proposition.
Condition (4.1) is sufficient; if it holds, then

Q@™ X + 1) =Qa™X — p) +a"(p + 1)
= Q"X —p) +a"(p +¢)
=a"(p +¢)

which is maximized for @ = a, = (u + t)/||x + t||. Then @(al(X + t)) =
l« + t|l, and it follows from T(X + t) = a,Qual(X + t)) = p + t that T is
translation equivariant.

Conversely, if T is translation equivariant, put u = T(X). Take an arbitrary,
but fixed value t € R’ and let a, = T(X + t)/| TX + t) | = (u + )/l + t].
Then

sup,@(a"(X + 1)) = | TX + t) | = | T(X) + t|| = |l u + t|.
On the other hand,
sup,@i(a”(X + t)) = Qua{(X + ¢))
= Q(ai(X — p) + af(p + 1))
= Q@ (X — ) +al(p + 1)
= Qual(X —p) + ln+t].

Hence Qi(af(X — p)) = 0. Since t was arbitrary, a, can be any arbitrary unit
vector, and it follows that (4.1) holds.

Clearly, if (4.1) holds, then it also follows that T is uniquely defined on the
translates of X, namely T(X + ¢t) = u + ¢.0

Actually, @ = ave is the only location functional leading to a translation
equivariant estimator in dimensions d > 1. This was proved by Critchlow (1981,
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unpublished) and independently by Fill and Johnstone (1984). Similarly, @Qn =
{standard deviation} is the only scale functional leading to an affine equivariant
estimator of a dispersion matrix, see Fill and Johnstone (1984).

5. What is an “interesting” projection? We cannot expect universal
agreement on what constitutes an “interesting” projection. A projection in which
the data separate into distinct, meaningful clusters would certainly be interesting.
But there are also interesting features that are not of the distinct cluster type
(e.g. an edge, or jump of density, at the boundary of some region). Rather than
trying to identify the kind of features we might regard as potentially interesting,
we should perhaps better begin by trying to understand why people have had
some degree of success with certain specified techniques.

5.1 Principal components and other Class II approaches. The prevalent class-
ical approach is to reduce dimensions by the method of principal components:
calculate the eigenvalues and eigenvectors of the covariance or correlation matrix,
and project the data orthogonally into the space spanned by the eigenvectors
belonging to the largest eigenvalues. Often, these projections show interesting
structure. Why? There seem to be at least two, loosely related reasons.

First, if a population is an aggregate of several clusters, then these can become
individually visible only if the separation between clusters is larger than the
internal scatter of the clusters. Thus, if there are only a few clusters, the leading
principal axes will tend to pick projections with good separations. Of course,
principal components can go astray, either if there are too many isotropically
distributed clusters (compare the Friedman-Tukey, 1974, example with clusters
at the corners of a regular simplex), or if there are meaningless variables with a
high noise level.

The second reason is more germane to principal component analysis performed
on correlation matrices. Assume that we have an intrinsic structure describable
by a few (unobservable) variables, and that we observe many, possibly differently
scaled (linear) functions of these variables, with independent random noise added.
Then principal component analysis tends to act as a variation reducing technique
(not unlike the sample mean), relegating most of the random noise to the trailing
components, and collecting the systematic structure into the leading ones.

Principal components are quite sensitive to outliers (see, e.g. Devlin, Gnana-
desikan and Kettenring, 1981), and while sometimes the outliers are part of the
structure to be described, one sometimes would prefer to set them aside. This
might be achieved by using the PP version of principal components (see Example
4.2) with a robust Class II functional as projection index. See Chen and Li (1981)
and Li and Chen (1981).

5.2 Class III approaches. When drawing scatterplots and other graphs, we
usually locate and scale the picture so that it nicely fills the available space (see
for example the explicit recommendations of Cleveland and McGill, 1984). This
may indicate that visual interestingness is an affine invariant notion. The
argument does not extend to quantitative aspects: the “judged association” of
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scatterplots is not invariant (cf. Cleveland, Diaconis and McGill, 1982), and we
usually carry along the eliminated location/scale information in numerical form,
namely as marginal annotations of the graphs. But in any case, it suggests to
separate off location/scale and to investigate the affine invariant aspects in
separation.

Therefore, I shall from now on concentrate on Class III functionals.

Below, I shall adduce heuristic arguments to the effect that a projection is less
interesting the more nearly normal it is. Intuitively, the central limit theorem
says that convolution makes distributions more normal, hence the convolution
of two distributions should be more normal (and less interesting) than the less
normal among the two convolution factors. In other words, it is desirable that
the projection index @ satisfies the following requirements:

Q should be affine invariant (= Class III), and if X and Y are
(5.1) independent random variables with finite variances, then @(X + Y)

= max(Q(X), Q(Y)).

Some heuristic arguments that interestingness goes together with nonnormal-
ity, are as follows.

e A multivariate distribution is normal, iff all of its one-dimensional
projections are normal (this is one of the well-known characterizations
of multivariate normality). So all of them are equally (un-)interesting.

o In particular, if the least normal projection is normal, we need not look
at any other projection.

e For most high-dimensional point clouds most low-dimensional projec-
tions are approximately normal. This statement has recently been made
precise by Diaconis and Freedman (1984). See also Figure 5.1, which
compares a random projection of the corners of a seven-dimensional cube
with a symmetrized normal sample.
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NoOTE. Diaconis has pointed out that PP generalizes from Euclidean space
to more general groups and their quotient spaces. Naturally, on a compact group
the place of the least interesting distribution is taken by the uniform one.

All examples of functionals satisfying (5.1) I know of are of the form

(5.2) Q(X) = h(S:(X)/S:(X)),

where h is monotone increasing function, and S;, S, are scale functionals
(= Class II) satisfying

(5.3) SHX + Y) < SUX) + S%(Y), (subadditivity),
and
(5.4) X + Y) = S3(X) + S¥(Y), (superadditivity),

respectively, when X and Y are independent random variables. Property (5.1)
then follows easily from the well-known inequality

a+c a c
(5.5) b d s max{g,g}

valid for arbitrary positive real numbers.
We first give three examples of sub- and superadditive scale functionals. All

are closely related to f-divergency, see Cziszar (1967).

EXAMPLE 5.1. Let ¢, be the mth cumulant of X:

(5.6) cm = (d/idt)™log(E(e*X)),
and let
(5.7) S1(X) = |cm|¥™, m=2.

Then S? is subadditive. This follows from the Minkowski inequality and the fact
that ¢, is an additive functional.

EXAMPLE 5.2. Let

1

2 -
68 8 = T &
be the inverse Fisher information, then S3 is superadditive. This superadditivity
is intuitively evident from the remark that S3(X) + S3(Y) is the asymptotic
variance of the sum of two asymptotically efficient location estimators based on
X and Y, respectively, while S3(X + Y) is the asymptotic variance of the best
estimator based on X + Y. For a formal proof, see Blachman (1965).

EXAMPLE 5.3. Let
(6.9) S, = em{— f log(f)f dx}

be exponential Shannon entropy, then S3 is superadditive. For a proof, see
Blachman (1965).
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This yields the following three examples of projection indices satisfying (5.1).

EXAMPLE 5.4. Standardized absolute cumulants:
(5.10) QX) = |em(X) | /ca(X)™?, m>2.

In particular, for m = 3 we obtain (absolute) skewness, for m = 4 (absolute)
kurtosis.

EXAMPLE 5.5. Standardized Fisher information:

,\ 2
(5.11) Q(X) = e¥(X) f <l-;-> fdx — 1.
EXAMPLE 5.6. Standardized negative Shannon entropy:

(65.12) QX) = f log(f)f dx + log((27e)"*(X)).

It is straightforward to see that in all three examples Q(X) = 0, with equality
if X is normal. In Example 5.4, this follows trivially from the fact that the higher
cumulants of the normal distribution are 0. In Example 5.5, we note that @ can

be rewritten as
2

(5.13) QX) = c¥(X) f <ff—’ - %,) fdx =0,

where ¢ is a normal density with the same mean and variance as f. In Example
5.6, we can rewrite @ with the same ¢ as

(5.14) QX) = — f log(?)f dx,

and Q(X) = 0 follows from Jensen’s inequality. In fact, in the last two examples
(but not in Example 5.4), Q(X) = 0 conversely implies that X is normal.

More generally, if @ is any functional satisfying (5.1), and if X;, ..., X, are
independent copies of any random variable X with finite variance, then (5.1)
implies by induction

(5.15) - QX + -+ + X,) = Q(X),
and if Q is weak-star lower semicontinuous, it follows by passing to the limit that
(5.16) Q(N) = Q(X),

where N is a normal random variable.

Note that any @ satisfying (5.1) essentially amounts to a test statistic for
testing normality. According to Ferguson (1961), skewness and kurtosis (Example
5.4) are most powerful for testing normality against the presence of outliers. A
sample version of Example 5.5 amounts in essence to a test statistic for testing
whether the score function —f’/f is a straight line, compare (5.13). Finally, if we
write the standardized Shannon entropy of Example 5.6 in the form (5.14) and
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expand it into a Taylor series in powers of A = f — ¢, we obtain the approximations

N s ~1f£
(5.17) Q(X)—2f fdx_2 ¢dx.

If we approximate further by taking a finite Riemann sum and by inserting a
histogram type density estimate for f, we see that the entropy index asymptoti-
cally amounts to a x>-test statistic used for testing normality.

In passing, I should mention that we have found empirically that all the usual
test statistics for normality (Kolmogorov-Smirnov, Durbin-Watson, etc.) give
about the same results when they are used as projection indices; that is, they
tend to find very similar directions. Major exceptions to this rule are skewness
and kurtosis, which are very outlier sensitive. Incidentally, this makes one wonder
about the quartimax and oblimax method of factor analysis (see Harman, 1967),
which are, essentially, PP-methods based on kurtosis. Though, only test statistics
that increase under deconvolution (i.e. satisfy (5.1)) are conceptually satisfactory
for finding least normal projections.

Finally, I should remark that the original Friedman-Tukey (1974) index
mentioned in the introduction can be described in our framework as being a
finite sample version of the “abstract” projection index.

(5.18) QX = 0ux) [ 12

where ¢, stands for the a-trimmed standard deviation, and f is the density of X.
This is a Class III functional, but it is not a consistent test of normality; it
reaches its minimum at a density of the form (¢ — bx?),, for some constants

a>0,b>0.
To obtain a sample version of (5.18), we replace o, by the sample a-trimmed
standard deviation a,, and the density f by the kernel estimate

(5.19) fx) = (1/n) 3 k(x — x)
with

k(x) =1/R for |x| <R/2,
=0 otherwise.

Note that
\ 1
(5.20) f f(x)? dx = R 2ij (R = |xi — x])s+.
We obtain—apart from a proportionality factor—the original 1974 Friedman-
Tukey index

(56.21) 0o 2ij (R — |xi — %)+

if we take R to be 0.1 times the sample standard deviation in the direction of the
largest principal component of the unprojected point cloud. Clearly, this choice
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of R is not affine equivariant, and thus (5.21) is not of Class III (but this was
changed in later implementations; personal communication by Friedman). To
obtain a Class III sample version of (5.18), we might determine R in an equivariant
fashion from the projected sample (e.g. by putting R = ca,, with say ¢ = 0.1).

6. Two-sample PP and robust multivariate estimators. In this section
it is more convenient to state the results in terms of finite samples X and Y in
d-space. We already mentioned that the classically best discriminating hyper-
plane between X and Y can be found by doing PP with the 2-sample ¢-statistic
as the projection index, or equivalently, by maximizing the projection index

ave{a”X} — ave{a”Y}

(6.1) sdvia’(X U )]

where sdv is the standard deviation. Note that (6.1) is a monotone function of
the usual 2-sample ¢-statistic.

This might be robustified for example by replacing the sample average by the
median, and the standard deviation by the median absolute deviation:

med{a”X} — med{a”Y}
mad{a”(X U Y)}

(6.2)

However, I would not advocate using this expression as it stands: I con-
jecture that a modified denominator, for example mad{(a”X — med(a”X)) U
(@”Y — med(a”Y))}, should lead to better results.

The supremum over a of (6.2) (or of one of its variants) provides a very robust,
affine invariant measure of the separation between X and Y. We can put this to
good use for measuring the outlyingness of an observation x; in a single sample
X: put

a"x; — med{a”X}
mad{a”X}

(6.3) r; = sup,

This can be used to construct highly robust multivariate estimators. Let w(r)
be a strictly positive, decreasing function of r = 0, such that rw(r) is bounded,
and define weights

w; = w(r).
Then the statistic
(6.4) T, =X wix/X wi
is an affine equivariant estimator of location, and
(6.5) Cyo = ¥ wix — Tu)(x: — Tw)"/T wi

is an affine equivariant estimator of the scatter matrix. If the points of X are in
general position (i.e. no d + 1 of them lie in a (d — 1)-dimensional hyperplane)
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then the breakdown point of both T, and C,, is
(6.6) e*=(n—-2d+1)/2n—-2d + 1)

(with equality in dimensions d > 2, and ¢* = %2 for d = 1 or 2). This result is due
to Donoho (1982); similar results (for infinite samples) have been obtained
somewhat earlier by Stahel (1981).

PROOF (Donoho). We must show that T, and C, remain bounded (and
nonsingular) unless we add at least n — 2d + 1 bad points to the sample X, where
n is the size of X. Let Y be a set of m bad points, then so long as m <n,

min{a”X} = med{a”(X U Y)} =< max{aTX};

hence :
SUp|qj=1 | med{a”(X U Y)}| = max;| x;].

A similar argument gives

Sup|q=;mad{a’(X U Y)} = 2 max;| x;].

For a lower bound on the mad, note that mad{a”(X U Y)} = 0 only if strictly
more than half of the elements of a”(X U Y) have the same value, that is, only
if more than (n + m)/2 points of X U Y lie in some (d — 1)-dimensional
hyperplane. Since no more than d points from X can lie in such a plane by
assumption, the number of contaminating points then must satisfy d + m >
(n + m)/2. So if X is in general position and n = m + 2d,

inf#y=minf|a|=1mad{aT(X U Y)} > 0.

These inequalities imply after some further algebra that the weights w; of the
points in X are bounded away from 0 (uniformly in Y), and that the w;| x;| and
the w;| y;| are bounded, so long as n = m + 2d. Hence T, and C,, are bounded
and nonsingular, and this implies the inequality (6.6).0

These PP estimators are the only known estimators of multivariate location
and scatter that are both affine equivariant and whose breakdown point ap-
proaches %2 in large samples.

7. Questions of k-dimensional projections. In the preceding sections we
were concerned with one-dimensional projections of d-dimensional point clouds.
The same approach, maximizing some functional Q of distributions in IR*, applies
to higher dimensional projections, but it has drawbacks:

(1) computations get harder (maximization over approximately kd instead of

d variables);
(2) it yields only a k-dimensional subspace, but for interpretational reasons,
one would prefer to get an ordered set of k directions.

Therefore, stepwise approaches are attractive; fix the first & — 1 directions
found and optimize among projections onto the k-space spanned by the fixed
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k — 1 plus one additional variable direction. But also this does not give a sequence
of directions, merely a nested sequence of subspaces. Note that orthogonal
directions do not suffice, the interesting directions may be oblique to each other.
(The approach can of course also be reversed: find first a k-dimensional projec-
tion, then reduce dimensions one by one.)

If we want to find a sequence of directions, recursive approaches are more
appealing: find the most interesting direction, remove the structure that makes
this direction interesting, and iterate. In essence, this amounts to PP density
estimation (PPDE, Friedman, Stuetzle and Schroeder, 1984); so long as we are
concerned not with the sample, but with the population version, we should better
call it PP density approximation (PPDA). We postpone this problem until
Section 11.

It is conceivable that stepwise approaches may miss structure that a direct
k-dimensional search would find easily. After all, it is an empirical fact that a
two-dimensional scatterplot may show striking features that would pass unno-
ticed in any one-dimensional projection. For example, holes (empty regions) are
very hard to discover in low-dimensional projections. We have no reason to
assume that machine search behaves much differently from visual search, and
Example 14.1 below may give analytical support to this assertion.

8. What next? After one has found some “interesting” projections, what
does one do next? Typically, the next action is one of the following list (part (1)
corresponds to the operational paradigm behind Friedman and Tukey (1974) and
the PRIM-9 system; parts (2) and (3) correspond roughly to PPC and PPR):

(1) Identify clusters, isolate them and investigate them separately.

(2) Identify clusters and locate them (i.e. replace them by, say, their center
and classify points according to their membership to a cluster).

(3) Find a parsimonious description (separate structure from random noise in
a nonparametric fashion).

Clearly, there is a floating boundary between the entries in this list, and the
details need investigation.

We note that often a cluster can be characterized by the location of its center
and the scatter matrix of the points forming the cluster.

Assume for the moment that we would like to optimize a PP procedure for
finding clusters. Then, even in the relatively simple case of (possibly overlapping)
elliptical clusters with different centers and covariance structures, it is far from
clear how we should optimize the choice of objective functions Q. In view of
Section 5, the problem of detecting such clusters may be formalized as a test of
normality whose power is optimized for a particular class of nonparametric
alternatives. Clearly, PP here infuses some new ideas and problems into the old
field of nonparametric tests. On the other hand, determining the shape of the
(elliptical) clusters is a problem of robust estimation of scatter matrices (with a
twist—we typically will want to concentrate on a minority of the points and
ignore the majority).

If the clusters are not nearly elliptical, a description in terms of scatter
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matrices becomes inappropriate. For nonconvex clusters (e.g. curved and twisted
“sausages”) low-dimensional projections should still be able to reveal the presence
of structure, but they may be of little help in unravelling it, mainly because each
projection may show confusing overlapping effects. Compare also Tukey (1982).

In such cases, a separation of structure from noise (“sharpening”) may reduce
overlapping effects and thus help with the interpretation. It recently has emerged
that PP methods are able to yield one of the most general and theoretically
clearest approaches to sharpening by deconvoluting the underlying distribution
(see Section 18). But first we must discuss some representational problems.

III. Projection pursuit regression (PPR)—abstract version.

9. Projection pursuit regression. Let (X, Y) be a pair of random vari-
ables such that X is R%valued and Y is R-valued. The problem is to estimate
the response surface

flx) =E(Y| X =x)

from n observations (Xi, Y1), - - -, (xn, Y) of (X, Y). A straightforward nonpara-
metric approach to this problem consists in estimating f(x) from the values Y;
observed at the k points X; nearest to x, for example, by fitting a constant, or
preferably, a linear function to them and evaluating it at x. Under weak assump-
tions this approach will estimate f(x) consistently, compare Stone (1977). Though,
if d is large, the curse of dimensionality causes trouble, and it may be more
attractive to approximate the response surface by a sum of ridge functions:

9.1) f(x) ~ 37 gi(afx).

Note that ridge functions may be thought of as generalizations of linear
functions: like the latter they are constant on hyperplanes.

The projection pursuit estimation and approximation process, proposed by
Friedman and Stuetzle (1981), works roughly as follows. Assume that we already
have determined the first m — 1 terms, that is, vectors a; and functions g; of one
real variable. Let

(9.2) ri=Yi— 3" gafX)

be the residuals of this approximation. Let a € R? be any unit vector, plot r;
against a”X;, and fit a smooth curve g to this scatterplot (Figure 9.1; see Section
20 for an explanation of the wiggly appearance of the curve).

Calculate the sum of the squared residuals relative to this g:

9.3) ¥ (ri — g(a"X)))?,

and then minimize this sum over all possible choices of directions a. The
minimizing direction a, and the corresponding smooth function g, then are
inserted as the next term into the approximating sum (9.2). The process is
iterated until the improvement in (9.3) becomes small.

This procedure has some definite advantages over its closest competitors: in
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F16. 9.1.

distinction to nearest neighbor techniques it is able to ignore information-poor
variables, and it appears to be much better suited to the representation of
intrinsically smooth response surfaces than methods based on recursive parti-
tioning. Once the directions a; and the functions g; have been determined, the
right-hand side of (9.1) can be evaluated very quickly.

On the other hand, there are considerable technical difficulties. In particular,
the choice of the bandwidth of the smoother used to find g is very delicate. The
sampling theory of PPR is practically nonexistent. The interpretations of the
individual terms in the approximating sum is far from easy.

We shall disregard sampling aspects for the moment (they shall be taken up
again in Section 20) and shall concentrate on the problem of approximating a
given function f by an expansion of the form (9.1).

First, in what sense should the series (9.1) converge to f? If the dimension is
d > 1, then the summands are not integrable in R? unless they are zero almost
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everywhere, so L,-convergence makes sense only with respect to some bounded
(i.e. probability) measure P in R".

(9.4) f (f(x) = 37 g(af'x))* dP — 0.

To fix the idea, we may take P to be the uniform measure on the unit cube.
Then it is clear that every square integrable function can be approximated in the
sense of (9.4); indeed, the ordinary Fourier series expansion of f is of this form.

Assume that we already have determined projection directions a; and functions
g;j for j < m. Now we want to determine a,,, g, such that the norm

(9.5) f r? dP

of the residual function
(9.6) r(x) = flx) — X" gi(alx)

is decreased by the maximum possible amount when g,,(a%x) is added to the sum
in (9.6).
For fixed a,,, the solution is given by

9.7 &n(2) = E(r(X) |anX = 2),

where the conditional expectation is taken under the assumption that X is
distributed according to the probability measure P.

PROOF OF (9.7). Let E’ denote the conditional expectation, given aZX = 2.
Then, among functions g of z, E’[(r — g)*]—and thus E[(r — g)?]—clearly is
minimized for g,, = E’(r).0

Moreover, we note that E[(r — g.)%] = E(r?) — E(g2), so the residual norm is
decreased most by choosing the direction a,, so that it maximizes the marginal
norm E(g2).

Under mild smoothness conditions, E(gZ%) depends continuously on the direc-
tion a,,, so a standard compactness argument yields that a maximizing direction
an, exists.

By induction, the residual r = r,, in (9.6) satisfies

E(ry) = E(f>) - ¥ E(g}) = 0.

It follows in particular that the maximal marginal norm E(g2) of the residual r,,
converges to 0 as m — oo,

This does not imply that E(r%) — 0. However, since E(|g»|) — 0, it follows
that the Fourier transform #,(s) = E(rnexp(is”X)) converges uniformly to 0 (to
show this, use a relation similar to (3.1)). It is evident from this remark that in
order to prove L.-convergence, it would suffice to establish a tightness condition
on the frequency spectrum of r,,. Since projections are a kind of smoothers, they
should not dissipate spectral power to higher frequencies; therefore, I conjecture
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that no additional regularity conditions are needed, but I do not have a proof.
The successive approximations

fn(X) =3P gafx), m=1,2, ...

to f need not be the best possible for m summands. In general, it is possible to
improve the fit by various versions of backfitting: omit one of the earlier sum-
mands g;, determine the best possible replacement and then iterate. Usually, the
directions g; are kept constant in this process.

10. Exact representations by finite sums. It is of some interest to know
the structure of the approximating sums (9.1), or in other words, of the functions
f that can be represented exactly by a finite sum of ridge functions. For simplicity
we shall only consider the case d = 2, and shall agsume that all functions are
smooth (but this assumption could easily be removed). A detailed discussion can
be found in Diaconis and Shahshahani (1984).

First, we note that the representation

(10.1) f(x) = f(x1, x2) = X7 gi(ayx: + agxe)
need not be unique. For example, in view of the identity
(10.2) 1% = (1/4ab)[(ax: + bxs)® — (ax; — bxy)?),

f(x) = x,x, has infinitely many representations as a sum of two ridge functions.

This example involves a homogeneous polynomial, and, in fact, this kind of
indeterminacy is the only one that occurs. More precisely, assume that f has two
representations:

(10.3) f(x) = Xt gi(a]x) = X7 h;j(b]x),
where (a;, ---, a,) are pairwise linearly independent two-dimensional vectors,
and similarly for (b,, - - -, b,). Standardize these vectors such that || a;|| = | b ||

=1, and that the first nonzero component of each a;, by is > 0.

ProPOSITION 10.1 (Diaconis and Shahshahani (1984)). For each j, either g;
is a polynomial, or else there is a k such that a; = by, and g — hy, is a polynomial.

PrOOF. It suffices to show that if

(10.4) - 1 glalx) =0,

with (a,, - - -, a,) pairwise linearly independent vectors, then g, is a polynomial.
Note that a ridge function can be annihilated by taking the derivative in direction
of the ridge. Thus, if we successively annihilate all summands in (10.4), except
the first one, by taking derivatives in directions orthogonal to as, a3, - - -, a,, we
find that the (n — 1)st derivative of g, must vanish identically. Hence g; is a
polynomial of degree < n — 2.0

There are functions that cannot be represented in the form (10.1) for any



454 P. J. HUBER

finite n. A simple example is
(10.5) f(x) = e™12,

Obviously, this function is not annihilated by any finite number of directional
derivatives, hence it cannot be of the form (10.1).

IV. Projection pursuit density approximation (PPDA).

11. Multiplicative expansions. If f is not just any arbitrary function on
R? but a probability density, then additive decompositions in the style of Section
9 are distinctly awkward; the approximating sums will not be probability densities
themselves, unless one resorts to ad hoc tricks like taking positive parts, trun-
cating (to ensure L, integrability) and rescaling. Multiplicative decompositions
make more sense; approximate f by

(11.1) fe(®) = II% hi(af X

Note that if & = d, and if the a; are linearly independent, then (11.1) amounts
to approximating: f by a product density (in a coordinate system with basis
vectors a;). .

If k <d, then (11.1) is not integrable; therefore, we shall prefer representations
of the form

(11.2) fu(x) = folx) TIt hi(af x),

where f, is some standard probability density in R? (e.g. a normal density with
the same mean and covariance as f).

We can view the sequence {h;, a;} either “synthetically,” as a sequence of
modifications to f, that builds up the structure of £, such that f. converges to f in
a suitable sense. Or else, we can view it “analytically,” as a sequence of modifi-
cations to f that strips away its structure, step by step, such that the sequence

(11.3) f-1(x) = f(x) TI§ hi(afx)™

converges to fo for k — o,

The two viewpoints bear some relevance on how we would determine the
sequence {h;, a;}. Assume that § is a metric in the space of probability densities,
and that we have determined the sequence {;, a;} up to & — 1. Then according
to the synthetic viewpoint, we would want to determine h,, a, such that é(f, f.)
is minimized; according to the analytic viewpoint, we would minimize 6(f,, f-z).
The two approaches are dual to each other: they interchange the roles of f, and
of f. Unless we use special properties of either f;, or f (e.g. that f, is normal or
that f is estimated from a sample), it therefore suffices to treat one of the two
approaches.

The quality of the approximation of a density g to a density f can be measured
in many ways, for example by

(1) relative entropy

(114 o= | og( ),
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(which is not a metric, since E(f, g) # E(g, f) in general), or by
(2) Hellinger distance

(11.5) H(f, g) = f (Vf — Veor* dx,

or by any other measure of distance beween distributions (Prohorov distance,
bounded Lipschitz metric, etc.). Since we are working with densities, we naturally
are more attracted to discrepancy measures defined in terms of the densities like
(1) or (2) than to the other distances mentioned.

Among the two, (1) is particularly well suited to an additive decomposition of
log f, implicit in (11.2) and (11.3), while (2) is better matched to an additive
decomposition of v; incidentally, this is another way of forcing positivity of the
approximating densities

fe(x) = (T hj(a]x))2

12. Properties of relative entropy. We begin with a few auxiliary lem-

mas.
Let

p(2) = Y%2? for |z] =1,
(12.1)
=|z| —-% for |z|>1.

We note that p is a continuously differentiable convex function.

LEMMA 12.1. For z > —1, we have

z — log(1 + 2) = Yap(2).

PROOF. Let 7(z) = z — log(1 + 2) — ¥2p(2). We have #(0) = 0, and we easily
verify that

2(1 — 2)

"(2) = — f <

/' (2) 21+ 2) or |z| <1,
z—1

=31 +2 for 2= 1.

Hence #’(z) < 0 for —1 < 2 < 0, and #’(z) > 0 for z > 0, thus / reaches its
(unique) minimum at z = 0, and the assertion of the lemma follows. [

LEMMA 12.2. Relative entropy satisfies

E(f, & = —f log(?)f dx = % fp(‘-; - l)f dx =0,

and in particular, E(f, g8) = 0 implies f = g a.e.
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PROOF. Put h =g/f — 1. Then

—f 1og<‘lé’)fdx= f [k — log(1 + W)]f dx — f hf dx.

Since [ hf dx = [0 (g — f) dx < 0, the inequalities of the lemma follow from
Lemma 12.1. Evidently, E(f, g) = 0 implies p(g/f — 1) = 0 a.e. [f]; thus g/f =1
a.e. [f], and since both g and f are probability densities this implies f = g a.e. 00

LEMMA 12.3.

[ - voran= I T
In particular, if E(f, f,) — 0, then f, — f in L, and in Hellinger distance.

PrROOF. The first inequality is trivial:

(V- o= | V- Vgl IVf+ Vel = |f— gl

For the second, see Kemperman (1969, page 162 f.) and Cziszar (1975). 0

We note that relative entropy is invariant under arbitrary affine transforma-
tions (in fact, under arbitrary differentiable 1-1-transformations).
The following lemma must be known, but I do not have a ready reference.

LEMMA 12.4. Assume that f is a probability density in R? which has finite
second moments. Then the best Gaussian approximation g to f in the relative
entropy sense (i.e. minimizing E(f, g)) has the same mean vector and the same

covariance matrix as f.

PROOF. In view of the preceding remark we may, without loss of generality,
choose the coordinate system such that f has mean zero and unit covariance
matrix. Let g, be the standard normal density in R¢, and let g be any other
normal density in RY with mean vector x and covariance matrix =. Then

E(f, &) - E(f, &) = f log<%>f dx

Ys[log(det Z) + Eff(x — u)"Z7X(x — p)} — Erf{x'x}]

Y[log(det =) + tr(Z7Y) + uTZ7u — d).

Assume that the eigenvalues of 27 are A, - - -, A4, then this can be written
= %[Z(\; — log \) + pTZ7u — d].

Since A\ — log A = 1, with equality iff A = 1, we obtain that E(f, g) — E(f, &) >0,
unless g = go. 0

13. Minimization of relative entropy and PPDA. In this section we
are concerned with optimal choices for the directions a; and the functions A; in a
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decomposition of the form (11.1). Assume first that k = d, and that the a; are
fixed, linearly independent vectors in R?. Without loss of generality, we may
choose a; to be the jth coordinate direction (cf. the remark preceding Lemma
12.4). In other words, the problem is to find the best approximation of a given
density f by a product density

(13.1) gx) = II{ g(x),

where the g; are one-dimensional probability densities.
The quality of the approximation shall be measured in terms of relative

entropy

(18.2)  E(f, 9 = f llog f — 3, log &(x)1f (x1, -+, %) d%; -- - da.

Clearly, this is minimized by minimizing

-2 f log[ g (x)1f(x1, - -, %a) dx; - - dxa,

which in turn is minimized by minimizing

_ f logle ()], (x) dx;

for each j separately, where

f}'(xj) = f f(xh ] xd) dxl e dxj_l dxjﬂ e dxd

is the jth marginal density.
Since E(f;, g;) > 0 for g; # f;, (Lemma 12.2), the minimum clearly is achieved

for the unique choice g; = f;.
We note in passing that this calculation at the same time proves that Shannon

entropy
Esn(f) = —f log(f)f dx

satisfies
Esu(f) = X Esn(f)

with equality iff f = [] f;.

By letting the d directions a; vary simultaneously and freely, we may more
generally approximate f by the best possible product density (we do not worry
about existence of the minimum for the moment):

g(x) = I1¢ gi(afx).

I do not know whether the best possible approximation can be constructed by
a stepwise approach: first solve a minimum problem to find a; and g;, then find

as and g;, and so on.
But if f is an exact product density in a suitable coordinate system, then there
is a stepwise approach that will sequentially pick up the unique factors one at a
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time. This is a nontrivial result involving some subtle properties of entropy; it
shall be sketched briefly.

The basic idea is to use the “analytic” approach mentioned in Section 11. Let
£ be the Gaussian density with the same mean and covariance matrix as f, and
let f.,, g be the one-dimensional marginal densities of a”x under f and g,
respectively. Note that the relative entropy E(f,, g,) coincides with the Class III
projection index of Example 5.6:

Bg) = | og{ £,

aQ,

=Q(fa) = f log(fa)fa dx + lqg(@ﬁa(fa)).

Now assume that f is a product density; without loss of generality we may

assume that
fx) = II fi(x),
and that the factors are ordered such that
E(f1,8) =2 E(f2,8) = - -- = E(f4, 8) = 0.

Since Q(f.) satisfies condition (5.1) of Section 5.2, it follows that @ reaches its
maximum at a factor of f, namely at the factor f; with the largest relative entropy
E(f., g1). We divide out this factor and replace f by

f*(x) = flx)g(x1)/fr(x1).
We note that f* still is a product density,
f*@) =11 f}(x)

with f¥ = g, f; = f; for j > 1. Thus, if f* is subjected to the same process as f
before, the second factor f is picked out, and so on. If E(f;, &) = E(fi+1, 8+1) >
0, the order in which the two factors are picked is indeterminate. The process
continues until f* = g is a Gaussian density, that is, until either j = d or
E(f;, g) = 0, whichever happens first.

Now let g be any approximation to any given density f in R%. We shall attempt
to improve the approximation by replacing g(x) by a density of the form
g*(x) = g(x)h(x,), where h depends on the first coordinate only. Note that g and
g* determine the same conditional density given x;. An intuitively attractive
choice thus is to determine h such that the one-dimensional marginal distribution
&, of g* in direction x, agrees with the corresponding marginal distribution f; of
f. We shall show that this indeed minimizes relative entropy.

LEMMA 13.1. Relative entropy E(f, g*) is minimized by the choice

h(xy) = fi(x1)/g1(1),

where f, and g, are the marginal densities of f and g in direction x,, and for this
choice, the decrease in relative entropy is

E(f, 8 — E(f, 8*) = E(f1, 8.
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PROOF. We note that the conditional density, given x;, is the same for g and
g%, however h; is chosen, namely

g | x1) =g(x1, -+, ) /81(x1)
and that g,(x;)h(x;) is the marginal density of g*. Thus

E(f, g*) = f (log f — log g*)f dx

= f [log f(+ | x1) — log g(¢ | x1) + log fi(x1) — log(gi(x:1)h(x1))]f dxs
which is minimized by minimizing

f llog f, - log(&: W) dx = E(fy, g:h),

and this clearly is achieved by the unique choice g,h = f,. This proves the first
assertion of the lemma. The second assertion follows from a composition of the
above expression for E(f, g*) for the two choices h =1 and h = f,/g;:

B, 9) - B, 8 = - | togtafds + | Togthte) de
= E(f,, 8). O

According to this lemma, if we may choose the projection direction a, then the
largest possible improvement in relative entropy that can be achieved through
replacing g(x) by g*(x) = g(x)h(a"x) clearly is obtained with

h = fu/8a

where f, and g, are the marginal densities of f and g, respectively, in direction a,
and where a is chosen such that it maximizes

(13.3) E(fm ga) = E(f’ g) - E(f9 g*)

At the moment, we are not concerned with the existence of such an a; maximi-
zation within a prescribed relative error tolerance is in fact good enough for all
practical purposes.

The procedures just described shall be referred to as the projection pursuit
density approximation (PPDA) method: find a direction ¢ maximizing E(f., &),
and then either replace f by f* = fg./f. (“analytic” version) or g by g* = gf./g.
(“synthetic” version), then iterate.

We already noted that this procedure (with a normal g) finds the least normal
projection of f, and if the analytic version is applied iteratively to a product
density, it will find the unique factors in descending order of nonnormality. It
would be interesting to know (cf. Section 15) whether these results remain true
if we interchange the arguments and maximize E(g,, f,) instead.

14. Maximum marginal relative entropy. Let f and g be arbitrary
probability densities in R? and let f, and g, be their one-dimensional marginals



460 P. J. HUBER

in direction a. We can use maximum marginal relative entropy

E*(f, §) = sup.E(f,, &)

as a measure of discrepancy between f and g. Clearly, because of Lemma (13.1),
E*(f, g) <= E(f, g). Since any distribution is uniquely characterized by the family
of its marginals in all possible directions (Cramér-Wold theorem), we have

E*f,8) =0 = f=g = E(f,g) =0.

If we determine a sequence {g*} of successive approximations by PPDA, then
each step decreases E(f, g¥) by E*(f, g®). Hence, if E(f, g) < =, it follows
that E*(f, g®) converges to 0; in fact, for any given ¢ > 0, it takes at most
k = E(f, g)/¢ steps to reach a density g® for which E*(f, g®) <.

Maximum marginal relative entropy is a concept particularly well suited to
PPDA, and it deserves a closer study. Let f be a fixed probability density in R?
while g® is an arbitrary sequence of probability densities.

Clearly, E(f, g*®) — 0 implies E*(f, g®) — 0. The reverse implication is false.

EXAMPLE 14.1 (D. Critchlow). Let f be the uniform density in the unit disk
in R%: '
fx) =1/x for |x|| <1,
=0 otherwise.

Let g be defined as follows (see Figure 14.1):
gPx) =1/ for 1/k=|x| <1,

=2/r for ||x|| <1/k, x>0,

=0 otherwise.

It is straightforward to verify that E(f, g®) = o for all k, but E*(f, g*) — 0.

Fic. 14.1.
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We shall now derive a few consequences of E*-convergence.

PROPOSITION 14.2. E*(f, g®) — 0 implies that g® — f in the sense of
weak(-star) convergence of the underlying measures.

Basically, this proposition is just another version of the Cramér-Wold theorem,
compare Billingsley (1968, page 48).

PROOF. In view of Lemma 12.3, E*(f, g%) — 0 implies that the marginal
densities show uniform L,;-convergence:

supaf | fo—8¥| —0.

Hence, the characteristic functions y, of the one-dimensional marginals converge
uniformly, and since the characteristic function ¢ of any density f is related to
the characteristic functions y, of its marginals f, by

Y(ta) = E(€™™) = yu(t), tER, a € R?

it follows that the characteristic functions ¢* of g converge uniformly to y:

hb(ta) - \b(k)(ta)l = SUp, f Ifa - g«(zk)L

Hence, g converges weakly. [

I conjecture that if f is sufficiently smooth, so that its characteristic function
is absolutely integrable, and if the sequence g® is generated by PPDA, then
g® — f uniformly and in the L;-sense. Actually, I can prove only a very special
case (which however covers the intended applications).

PROPOSITION 14.3. Assume that the density f in R can be deconvoluted with
a Gaussian component:

f=7=x¢,

where f is some density, and ¢ is normal (0, o2I;) for some o > 0. Let g be
the normal density with the same mean and covariance matrix as f. Then the
sequence g®, k=0, 1, 2, - - -, of approximating densities, constructed by PPDA
(Section 13, end), converges uniformly and in L, to f.

PROOF. Each of the g allows a deconvolution g® = g® % ¢. This shall be
proved by induction. It clearly is true for k = 0, since g'© itself is Gaussian.

Thus, assume that g = g* can be deconvoluted. For the following argument it
is essential that ¢ is a product density in all orthogonal coordinate systems, so
that convolutions can be calculated coordinate-wise. Choose the coordinate
system such that a,, is the first coordinate direction. Then the product represen-
tation of Z:

&=28(|x1)8:(x1)
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induces a product representation of g:
g =4g(* | x1)g1(x1),

with g(¢ | x;) and g,(x;) being obtained by convoluting their barred counterparts
with (d — 1)- and one-dimensional normal densities, respectively. If in the last
displayed equation we replace g, by fi = f1 * .#(0, ¢%), we obtain the desired
deconvolution of the next term g**%.

The characteristic functions of g% and g* are related by ¢y®(s) =
v¥(s)exp(—a?|s|?/2), and a similar relation holds for the characteristic func-
tions ¢, ¥ of f, f, hence ¢ and ¢ are majorized by exp(—o? | s |%/2).

It follows that the y* are absolutely integrable, and g® can therefore be
represented as

g% (x) = (2m)™ f Y ®(s)e™" ds.

Since the sequence ¥’ converges uniformly, it now follows from the majorization
of ¢ and ¥® that the sequence

| flx) — ¥ | = (2m)™ f | ¥(s) — ¢®(s) | ds

converges uniformly to 0. L;-convergence follows trivially (from uniform conver-
gence and tightness of the weakly convergent sequence of measures g*). [

V. Projection pursuit density estimation (PPDE).

15. General remarks on PPDE. It is straightforward to change the
PPDA procedures of Section 13 into density estimators. The first step is to
standardize the point cloud in R? by an affine transformation so that it is
centered at 0 and that its covariance matrix is the unit matrix. Note that this
raises some very delicate robustness questions; our density estimates should not
be sensitive to occasional outliers, but they should be able to pick up long tails
in the underlying distribution. These two requirements are contradictory; we
lack a rational basis for separating between spurious outliers and genuine long
tails. But from a pragmatical point of view, we note that all density estimators
have trouble coping with isolated points in the tails—at best, these points produce
equally isolated bumps in the estimate, and at worst, (especially if we use adaptive
cross-validation), they may act as leverage points, messing up the estimate
elsewhere. So it is probably wise to identify and to set aside such isolated points
(for example, with the help of the measure (6.3) of outlyingness), and to disregard
them in the estimation procedures, but to show them as remarkable points in (at
least some of) the pictures we produce.

Since it seems to be better if the initial estimate has too heavy tails than if it
has too light tails, we would seem to have the choice of either using the classical,
nonrobust mean and covariance matrix together with a Gaussian g©, or else
robust location and covariance estimates together with a density g that is
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heavier tailed than the Gaussian (but we should not combine a robust covariance
estimate with a Gaussian g©). I believe the simpler first version to be good
enough in most cases.

The zeroth order density estimate g thus ordinarily is the d-dimensional
standard normal. The approximation steps now can be described as follows.

Let

g(x) = g®(x) = g9%) 1% hi(afx)

be the current density estimate.

According to Section 13, we should determine a next direction @ = a1 such
that it maximizes E(f., g.), and then put hy.1 = fo/g..

For a given g, f, is straightforward to estimate: project the sample in direction
a, yielding z; = a”x;, i = 1, - - -, n, and then calculate a one-dimensional density
estimate fa based on (24, - - -, 2,).

The projection g, of the current density estimate is a well-defined quantity,
and from the point of view of theory does not present any problem. However, we
may run into trouble with its calculation, in particular since it has to be calculated
inside a minimization loop. Direct numerical integration almost certainly is too
slow. There are several appealing Monte Carlo approaches (cf. Friedman, Stuetzle
and Schroeder 1984). A first one is to replace g by a sample y,, ---, y, from g,
and then to estimate 2, in the same way as f,. This may not be easy to implement
(how does one sample efficiently from g?). A second one is to take a random
sample y, - - -, yn from some cleverly chosen distribution with density A®(x) in
R (for example, a truncated normal one, if outliers have been purged away from
the original data sample). Put

_ g(O)(x)
- h(O)(x)

and create a histogram with bin width A and value
/j=2 {vi|2j—A/25aTxi<Zj+A/2}

for the bin with midpoint 2;. Then apply a kernel smoother to this histogram to
obtain the estimate Z,.

A possibly even more appealing approach is not to maximize E(f,, &), but
E(fSP, g), where f$® is a sample version of (11.3), defined as follows. Let

w; = [I% hiafx)7,
and create a histogram with bin width A and value
/}=Z {w,-lz,-— A/2 SaTx,-<z,-+ A/2}

for the bin with midpoint z;. Then apply a kernel smoother to this histogram
to obtain the estimate f;*. This corresponds to the procedure mentioned in the
last sentence of Section 13.

We proposed here to use marginal entropy as the criterion to be maximized
when determining a new projection direction. This certainly is the conceptually

V;

H'f hj(ajTyi),
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purest approach. But it is conceivable that other measures of discrepancy might
offer advantages from a sampling or computational point of view; the matter
needs further investigation.

16. Consistency of PPDE. By reinterpreting some of the results of Sec-
tion 14, consistency of PPDE is almost trivial to prove. But the proof at the
same time shows why consistency per se is a rather useless concept.

Assume that we are given a sample xy, - - -, x, in R and let

(16.1) w=(1/n) 2% &,

be the empirical measure. We now apply a spherical}y symmetric normal kernel
smoother to obtain the density estimate

(16.2) F=ux 70, o).

Note that the marginal density 7, of f in direction a is obtained by applying the
one-dimensional kernel .#(0, ¢2) to the projection

(16.3) pa = (1/1) 3 bury,

of the original data.

It follows that if we iterate a PPDE (using relative entropy as the criterion),
with a Gaussian kernel smoother in the projections, it numerically converges in
the E*-sense to the d-dimensional kernel estimate f.

Since f can be deconvoluted with a normal component, it follows from
Proposition 14.3 that the PPDE converges uniformly and in L, to f, if the number
of iterations tends to infinity. )

The d-dimensional kernel estimate f is consistent under very weak assump-
tions on the true underlying density f if o tends to 0 slowly, while the sample
size n goes to o. It follows that PPDE is consistent too, provided we iterate it
enough so that it approximates f sufficiently closely.

This result is not very helpful, however. After all, the main reason for using
PPDE is that the sample size is too small for a d-dimensional kernel estimator
to make sense. We certainly do not intend to iterate the PP density estimation
so far that it approximates the latter. The following example may illustrate the
issue. g

ExXAMPLE 16.1. Take a sample of size n from the standard normal .#'(0, I) in
d dimensions. Note that a half-and-half mixture of two one-dimensional normal
densities .#(*+a, o?) is unimodal for & < o, bimodal otherwise, and that the same
holds true for a pair of d-variate normal densities .#(xu, o) with ¢ = | u|.
Thus, we may say that two sample points are merged in the d-dimensional kerne]
estimate (16.2), if their Euclidean distance is < 20, and that they are separatec
otherwise. The expected number of merged point pairs can be calculated as

m = Yan(n — 1)gq,
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where
q = P{||x: — x| = 20} = x3(26%)

is the probability that a specified pair of points is merged. Numerically, we obtain
with d = 10, ¢ = 0.1 and n = 10°® that m = 0.4. In other words, we have a better
than even chance that all 10° sample points are separated. The one-dimensional
marginal estimates (with the same kernel) on the other hand will be quite smooth.
Note that for one-dimensional estimates a kernel width kn~'/° minimizes the
asymptotic mean square error, and that the constant k is such that for n = 106
the choice ¢ = 0.1 is close to optimal (see, e.g., Wegman 1972, page 536).

Note that in this example, the zeroth order PPDA to the underlying density
is exact, and in the sampling case the starting density g© already is the best
PPDE; more generally, if the kth order PPDA g is exact, then there is no
reason to go much beyond order k in the PPDE g%, and depending on the sample
size, it may be preferable to stop much earlier.

More meaningful consistency results should therefore be concerned with the
convergence and the speed of convergence of §* — g® — 0, for fixed k.

Since we would not know the true f in practice, we would also need an analogue
of Mallows C,-statistic, telling us when to stop the projection pursuit approxi-
mation process. '

VI. Connections to computer tomography.

17. Fixed projection directions. Computer tomography (CT), just like
PP, is concerned with the reconstitution of a higher dimensional structure from
lower dimensional projections. For an introductory survey of CT, see Shepp and
Kruskal (1978).

But there are many differences. The most conspicuous one is the absence of a
search for informative projections in CT. CT aims for an accurate reconstruction
of a not directly observable two-dimensional density from the set of all one-
dimensional projections; in practice, one only has a finite, but fairly dense and
equispaced set of projections, and they are affected by random observational
errors. In PP, on the other hand, the higher dimensional information is directly
accessible, but it consists only in a random sample from the density, and the
latter should be approximated on the basis of a few selected projections of the
random sample.

Nevertheless, some of the mathematics is closely related. For example, the
algebraic reconstruction techniques (Gordon, Bender and Herman 1970), whose
applications to CT have now been superseded by Fourier techniques, but which
have advantages if the data is not equispaced, use the same iterative improvement
techniques as PPR and PPDA.

The questions of common relevance to both CT and PP concern, in particular,
approximations based on a finite number of discrete projections. Assume that we
are to approximate a density function f in RY% and that we are given m fixed
directions a,, - - -, a,. What is the “best” additive approximation

(17.1) g(x) = X1 hi(a;x),
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and what is the “best” multiplicative approximation
(17.2) &(x) = TIT hy(a;x)

to f?

Second, given only the projections f; (i.e. either the conditional expectations
or the marginal densities) of f in the directions g;, what is the “best” choice of g
under the side condition that the projections g; of g in the directions a; agree with
those of f?

In each case, the notion of “best” needs to be made precise. For additive
approximations (17.1), it appears appropriate to formalize “best” so as to mini-
mize the L,-norm

(17.3) f (f — 8)?* dP;
for multiplicative approximations (17.2), so as to minimize relative entropy,
17.4) E(f, 8) = f log(é)f dx.

For the second type of problem, we may define the “best” choice of g to be the
one with the least variability:

(17.5) f g% dP = min!,

or the one with the largest entropy

(17.6) H(g) = —f log(g)g dx = max!.

Assume that the space M of functions of the form (17.1) is a closed subspace
of the Hilbert space of square integrable functions. Then (17.1), (17.3) and (17.5)
are nicely matched up: the solution g is uniquely described by the property that
it is of the form (17.1) and satisfies g; = f;.

Geometrically, this is obvious:

(1) If g minimizes E(f — g)* among all functions in M, then f — g L M; this
orthogonality relation is equivalent to E(f — g|a;X) = 0, or g; = f; for
j = 1’"\7. ce,m.

(2) The orthogonal projection of f to M minimizes Eg% among all functions
satisfying g;=fforj=1, ..., m.

The relations (17.2), (17.4) and (17.6) are matched up in an analogous fashion.

Unfortunately, it is not at all clear whether M is closed; see the remark in
Shepp and Kruskal (1978, page 428), and consult Hamaker and Solmon (1978)
for a laborious proof in a special case. See furthermore Logan and Shepp (1975)
and Logan (1975) for a detailed study of the number of terms required in (17.1)
(in terms of the energy distribution of the Fourier transform f).
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VII. Projection pursuit and time series problems.

18. Minimum entropy deconvolution as a sharpening tech-
nique. Deblurring and sharpening are ubiquitous problems; just think of how
to make a sharp picture from a snapshot blurred by camera motion during
exposure, or of how to improve the sound of a historic phonograph record. Our
own visual system is surprisingly good at it (this is exploited for example in the
anti-aliasing techniques of computer graphics: by suitably blurring a staircase
line we can trick our eyes into reconstructing a sharp straight line).

Often, the blurring process is known in detail, and deblurring amounts to the
undoing of a known (not necessarily linear) filter. Here we are interested in the
other extreme case, where the filter is not known and has to be reconstructed
together with the underlying process from the data. Already the case of linear
filters (the only case we are going to consider) amounts to the seemingly
unsolvable task of factoring an observed process y into a convolution product of
two unobservable factors:

y=f=ux,
where f is the unknown filter which has blurred the underlying process of
interest x.
To fix the idea, assume that y is a time series, observed at equidistant points:
¥y=1(--+, ¥ Ye+1, - - -). Thus,

Ye = Zs fsxt—s,

and the problem is to find a filter ¢ inverse to f, so that g * y = x.

These are several conceptually different approaches; a common theme behind
many of them is to view x as a bottommost, not further reducible causative
process. More or less, this amounts to assuming that knowing the past values x,,
r < t, does not help you in predicting a future value x, s > ¢, and that the future
values of x do not influence the past values of y, so that f, = 0 for s < 0. Assuming
stationarity, the first requirement means that the x, are independent, identically
distributed random variables, and we shall make the gratuitous assumption that
they have finite variances.

Now, for any filter q, we have q * y = (¢ * f) * x, so (g * y)., being a linear
combination of several x;, is more normal than a single x; (in the sense of Section
5.2). '

Thus, the filter q inverse to f has the property that it produces a least normal
g * y. Clearly, q is not unique since it can be shifted in time (replace g, by ¢,
and x, by x.+x), and if y is a Gaussian process, then g is completely indeterminate.

In the PP framework of Section 5.2, we may phrase the problem as fol-
lows: restrict the maximum length of the filter g to d. Consider the segments
(¥, Yer1, + -+, Yera—1) of length d as points in R?. Find a least normal one-
dimensional projection; the corresponding direction ¢ may be taken as an ap-
proximation to f .

A concrete application of these notions can be made in geophysics. Donoho
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(1981) pointed out the usefulness of the considerations of Section (5.1) in a time
series context, and related them to current work on deconvolution in exploration
seismology. What geophysicists call “Minimum Entropy Deconvolution”—intro-
duced by Wiggins (1978)—is actually a PP method in the present sense, with
kurtosis (not entropy) as a projection index. The point of MED is to recover a
convolution component which for geological reasons is supposed to be “impulsive”
or “spiky.” Modelling such a component as “non-Gaussian i.i.d.” one obtains just
such impulsive series; and the PP approach described above is the optimal
deblurring procedure under that model—if one uses the right projection index.
In this case it turns out that the right index actually is standardized entropy,
which the MED nomenclature might have suggested; this results from large-
sample statistical considerations not employed by Wiggins in naming the method.

19. A time series version of PPR. For stationary Gaussian processes, or
more precisely, for processes allowing a harmonic decomposition,

’

(19.1) X = f e MY(d))

in terms of a process Y, with independent increments, spectrum analysis clearly
is the approach of first choice; it separates the process into irreducible compo-
nents.

For other processes, for example for those generated by the superposition of
nonsinusoidal periodic wave forms, other approaches may be more appropriate.
In particular, one might then prefer not to leave the time domain.

In concrete terms, suppose that the process X; is of the form

(19.2) X, =3, fi(t/p))

(plus some noise, which we shall ignore for the moment), where p; is the period
and f; the shape of the jth periodic component. The function f; is assumed to be
smooth and periodic with period 1. Both p; and f; are unknown, but we assume
that each f; averages to 0 over time.

We note that if the p; are linearly independent over the field of rational
numbers, then the representation (19.2) is unique, and it is in principle possible
to extract the jth component by averaging over points spaced p = p; apart; if we
put

i

(19.3) Zp = avep{ Xosip)s
then
Zp;.t = fi(t /pj)-
Note that
(19.4) ave, {(X, — Z,:)% = ave,{X?} — ave,{Z3,},

so it looks attractive to do projection pursuit with regard to the projection
operator (19.3) and to search for a period p maximizing Q(p) = ave,{Z2,}.
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Unfortunately, this will pick bewilderingly many periods p. Note that Z,, is
the same function for all k = 1, 2, - .., and if the f; are nonsinusoidal, they have
higher harmonics with periods p;//, so every single component f; will create spikes
in Q(p) at p = kp;/7, for all k = 1 and for at least some / = 1.

Without doubt (19.3) provides a nice method for looking at the shape of
periodic components with given periods, and it has been used successfully for
example in the investigation of circadian rhythms (cf. Enright, 1981). But it is
far from clear whether projection pursuit with @ as a method for uncovering
hidden periods is preferable to more conventional methods based on the peri-
odogram or complex demodulation, which search for periods p that yield large
values of

(19.5) |C(p) |? = | avefe®™ "X} |2

While this latter approach picks up the higher harmonics p = p;//, it ignores
the spurious subharmonics (p = kp;/7 with k > 1).

A comparison of the sample versions of these procedures is interesting. For
every given value of p, plot X, against ¢{(mod p). Then fit a smooth curve Z,, to
this scatterplot to obtain a nonparametric estimate of Z,,;, (see McDonald, 1982).
We may compare this to the more traditional periodogram approach, which
amounts to fitting the two parameters of a sine wave (amplitude and phase) to
this same scatterplot.

The periodogram approaches have had an infamous reputation for picking
spurious periods, because—prior to the book of Blackman and Tukey (1959)—
people often had not paid enough attention to the sampling properties of (19.5).
The sampling properties of ave{Zﬁ,t} clearly are in need of an equally careful
scrutiny!

VIII. Finite sample implementations of PP methods.

20. Sample versions of PPR. We continue the discussion begun in Sec-
tion 9. Assume that a response surface

(20.1) flx) = E(Y | X = x),

where X is d-dimensional and Y is one-dimensional, is to be estimated from a
sample {(x;, ¥;)} of size n, and is to be approximated by a finite sum of estimated
ridge functionsi

(20.2) fx) ~ 3T 816} »).

The “engineering” aspects of constructing a good sample version of PPR are
very delicate, even more so than what transpires from the published account
(Friedman and Stuetzle, 1981), and they deserve a careful discussion.

The situation is analogous to that in numerical spectrum analysis. There the
real progress did not come through mathematical statistics in the usual sense,
that is, through consistency and asymptotic normality proofs, but through a
mathematically much more primitive, qualitative and quantitative understanding
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(see Blackman and Tukey, 1959). This understanding involved recommendations
for balancing bias against variability; one realized that one was not estimating
the “true” spectrum, but a smoothed version thereof, using estimates that had
an approximate x %-distribution with so-and-so many degrees of freedom. It was
even more important to sort out the pitfalls due to aliasing and leakage, and to
learn how to avoid them; some pitfalls were discovered and remedied only
recently, e.g. the masking effect due to (small) gross errors (Kleiner, Martin and
Thomson, 1979).

In PPR, we are only at the beginning of this process. The main problem is
that we are trying to estimate a response surface in a setup where there are not
enough observations to do it through a direct, d-dimensional nonparametric
approach. Unless we are very careful, the PPR estimate may get trapped by
(local) overfitting in one of the low-order g;, thereby invalidating subsequent
approximations. It may also go astray by including too many terms.

The PPR fitting procedure begins by simultaneously determining a direction
a and a smooth function g, such that the square average of the residuals

(20.3) ri=yi— §@")
becomes least possible (in a sense to be made precise). Then the process is

repeated iteratively, with the residuals r; in place of the y;. It suffices to describe

the first step of the algorithm.
According to (9.7), the “ideal” function g, for a given direction a, is the

conditional expectation

(20.4) g(x) =E(Y |aTX = 2).
For the following discussion it may help to decompose y; and write it as
(20.5) yi = g(a"x) + [f(x:) — ga™x)] + ;.

Even if f and g are smooth and the random error u; is small, the y; may show a
seemingly erratic behavior when plotted against z; = a”x;, because of the varia-
bility of f in directions other than a. Overfitting at this stage would have
catastrophic consequences with regard to subsequent iterative steps.

For each fixed choice of a, the smoothing algorithm proposed by Friedman
and Stuetzle (1981) makes several passes over the data:

0. Sort the data in ascending order of the z; = a”x;.

1. Smooth the scatterplot of y; against z; by running medians of three.

2. Estimate response variability at each z; by the average squared residual of
a locally linear fit with constant bandwidth.

3. Smooth these variance estimates by a fixed bandwidth moving average.

4. Smooth the sequence obtained by pass (1) by locally linear fits with variable
bandwidths determined by the smoothed local variance estimates obtained

in (3).

A few comments on the different passes follow.
Pass (1) is suggested by robustness; it intends to safeguard against isolated
gross errors in the u;. On the other hand, note that long tails in the distribution
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of f(X) — g(a™X) may indicate that the choice of a can be improved. The two
requirements conflict with each other; attempts at being robust may cost us
dearly in terms of our ability to find good projection directions.

Furthermore, we remark that for any d-tuple of points x;, we may find a
direction a projecting them to the same z = a”x;. Thus, whenever there are r or
more large positive outliers anywhere among the y-observations, any median
smoother with span < 2r + 1 will break down in some direction a. By the way, it
is not at all evident without a detailed analysis of the algorithm whether
breakdown of the smoother here implies that the direction a is unjustly preferred
or spurned later on. Either alternative may have unpleasant consequences.

In the passes (2) to (4), observation i is omitted from the local averaging
process determining the smoothed value g(z;). The main purpose of this cross-
validation approach is to protect against overfitting. Lecally linear, rather than
locally constant, fitting helps to reduce the bias near the ends of the sequence;
note that a large bias in some of the fitted values g(a”x;) may foul up the search
for the best a.

The entire curve-fitting process (passes (0) to (4)) occurs within a minimization
loop; it is vitally important that it be done in a fast fashion. It appears that
locally linear fits with constant weights over a fixed number of neighboring points
are an excellent compromise between quality and speed; the smoothed value at
zi+1 can be obtained by a simple (numerically unstable, but adequate) updating
procedure from that at z;. The main drawback of the constant weights is that the
smoothed curve remains locally wiggly (cf. Figure 9.1). Actually, one runs several
(say three) concurrent smoothers with different, but constant bandwidths in (2)
and (3), and then for (4) chooses the one which gives the smallest local variability.

For the minimization, a simple and crude Rosenbrock algorithm is used. Note
that—except for purposes of interpretation—it does not matter very much if a
particular direction q; is determined inaccurately, later terms in the sum (20.2)
will correct it.

Since, especially in the earlier stages of the procedure, the as yet unexplained
part of the variability of f can be quite large, and the smoothing is correspondingly
unreliable, backfitting is much more important than in the abstract version:
readjust the earlier summands g; (and possibly also the @;) in turn, keeping the
other m — 1 contributions to (20.2) fixed.

The fine-tuning of the PPR algorithms so far has been based on the intuition
of the originators and on uncontrolled experimentation. For further progress, we
would need some crude theories explaining the quantitative after-effects of
particular choices for the bandwidth of the smoothers and some theoretical
insight into stopping rules.

Consistency results may be mathematically interesting, but will be rather
irrelevant. The point (already made earlier in this section) is that PPR is designed
to work in the transient region where the sample size n is not yet large enough
for direct d-dimensional nonparametric regression. The only way a consistency
result can become useful is when it is accompanied by a realistic estimate of the
approximation error of ¥ 2i(a/x) relative to the best approximation to f of the
form Y7 gi(afx), and which is valid for sample sizes smaller than those needed
for direct d-dimensional approaches.
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21. How many points? If the sample is too small, PP methods are likely
to find spurious features. The paper by Day (1969) gives a graphical demonstra-
tion of this fact (with 50 points in 10 dimensions).

We begin with the one-dimensional case. There, the Kolmogorov distance
between the true and the empirical cumulative satisfies the asymptotic bound

(21.1) P(sup, | F.(x) — F(x) | = ¢) < 272",

For the sample sizes and probability values of interest, the bound practically
is an equality. In particular, we shall mark down that for n = ¢72,

(21.2) P(sup, | Fn(x) — F(x) | = ¢) =~ 0.27.

Note, for example, that the two distributions .#(0, 1) and %.#(—0.8, 0.36) +
%4(0.8, 0.36), whose densities are shown in Figure 21.1, have Kolmogorov
distance 0.046. This example would seem to suggest that we should aim for values
of ¢ = 0.05 and smaller, that is, for sample sizes in the range n = ¢2 = 400 and

larger.

Mixture of Normals

DENSITY
8

8.20 7

FiG. 21.1.
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In higher dimensions, a theorem of Vapnik and Cervonenkis (1971) gives the
following upper bound for the Kolmogorov distance in the worst projection:

(21.3) n = Pl{sup,sup, | F,.(t) — Fut) | = &} < 48(d, 2n)e """,

Here, F, and F, ,, respectively, are the one-dimensional cumulatives of the true
and of the empirical measure in R projected in direction @, and

(21.4) ®(d, n) = Ty ('r‘)
is the maximal number of regions into which d-space can be divided by n
hyperplanes.
For d = n/2 we have

n\ n n\
(21.5) ®(d, n) < (d) m < 2(d) s
(this is shown by majorizing the sum by a geometric series), and

d
(21.6) (Z) < % < nd~%e(2nd) "
by Stirling’s formula. Hence
d
(21.7) 7 < 8<2e S) (2wd)~V2e~8,
and thus
(2xd)? g( n\ _en

(21.8) log[ 3 7| < d|logl 2e 4 3 dl

This inequality improves the ones given by Vapnik and Cervonenkis (1971),
who had used the bound ®(n, d) < n¢ + 1. In particular, it implies that for each
£> 0, the probability n of large deviations can be made arbitrarily small, uniformly
in d, by choosing n/d sufficiently large. (This result is due to Ken Alexander.)
This is about the weakest sufficient condition for consistency we could reasonably
have hoped for.

The bad news is that the values of n/d turn out to be very large. For example,
with #n = 0.27 and ¢ = 0.05 we obtain from (21.8) that n/d = 40000. Even if this
value should turn out to be too pessimistic by two orders of magnitude (as a
comparison with the value n/d = 400 appropriate for d = 1 perhaps might
suggest), the sample sizes required still would be much larger than the ones one
usually encounters with multivariate data sets.

Perhaps the practical conclusion to be drawn is that we shall have to acquiesce
to the fact that PP will in practice uncover not only true but also spurious
structure, and that we must weed out the latter by other methods, for example
by validating the results on different data sets.
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I congratulate Professor Huber for an excellent survey of Projection Pursuit
methods. Putting together the diverse research in this area into a coherent
prospective is a difficult and challenging task. This paper represents an important




