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INVITED PAPER 

PROJECTION PURSUIT1 

Harvard University 

Projection pursuit is concerned with "interesting" projections of high 
dimensional data sets, with finding such projections by machine, and with 
using them for nonparametric fitting and other data-analytic purposes. This 
survey attempts to put the fascinating problems and ramifications of projec- 
tion pursuit-which range from principal components, multidimensional scal- 
ing, factor analysis, nonparametric regression, density estimation and decon- 
volution of time series to computer tomography and problems in pure math- 
ematics-into a coherent perspective 
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I. Generalities on projection pursuit. 

1. Introduction. Projection pursuit (PP) techniques were originally pro- 
posed and experimented with by Kruskal (1969, 1972). Related ideas occur in 
Switzer (1970) and Switzer and Wright (1971). The first successful implemen- 
tation is due to Friedman and Tukey (1974), who also coined the catchy name. 

The original purpose of P P  was to machine-pick "interesting" low-dimensional 
projections of a high-dimensional point cloud by numerically maximizing a 
certain objective function or projection index. In its Friedman-Tukey form, this 
index was the product of a robust measure of scale (trimmed standard deviation) 
with a measure of clumpiness (a weighted count of the number of close pairs). 

After a dormant stage of several years, Friedman and Stuetzle extended the 
idea behind P P  and added projection pursuit regression (PPR: Friedman and 
Stuetzle, 1981), projection pursuit classification (PPC: Friedman and Stuetzle, 
1980) and projection pursuit density estimation (PPDE: Friedman, Stuetzle and 
Schroeder, 1984). 

The most exciting feature of P P  is that it is one of the very few multivariate 
methods able to bypass the "curse of dimensionality" caused by the fact that 
high-dimensional space is mostly empty. For example, assume that a large number 
of points is distributed uniformly in the 10-dimensional unit ball. Then the radius 
of a ball containing 5% of the points is (0.05)0,1 = 0.74. This implies that kernel 
smoothers and similar methods will not be able to pick up small features, unless 
the sample size is gigantic. P P  avoids this problem by working in low-dimensional 
linear projections. The price to be paid is, of course, that P P  is poorly suited to 
deal with highly nonlinear structures (but kernel smoothers are not a viable 
alternative either). 

In addition, the more interesting P P  methods are able to ignore irrelevant (i.e. 
noisy and information-poor) variables. This is a distinct advantage over methods 
based on interpoint distances like minimal spanning trees, multidimensional 
scaling and most clustering techniques. These latter methods also avoid (at least 
to a certaio extent) the curse of dimensionality, but all of them can be derailed 
by noninformative variables. 

Many of the methods of classical multivariate analysis turn out to be special 
cases of PP. Examples are principal component and discriminant analysis, and 
the quartimax and oblimax methods in factor analysis. 

P P  emerges as the most powerful method yet invented to lift one-dimensional 
statistical techniques to higher dimensions. To give a simple example: if we take 
the 2-sample t-statistic as our projection index, then P P  searches for the best 
discriminating hyperplane in the classical, Fisherian sense. If we replace the 
t-statistic by a robust 2-sample test statistic, we obtain a robust version of 
discriminant analysis. 
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The only known affine equivariant estimators of multivariate location and 
scatter with high breakdown point (i.e. approaching lh in large samples) are based 
on P P  ideas (Stahel, 1981; Donoho, 1982). 

P P  methods have one serious drawback: their high demand on computer time. 
We may say that PP became both needed and feasible through the advent of 
inexpensive high-speed computing, and this may explain its simultaneous, mul- 
tiple invention around 1970. 

Among the more remote ramifications of PP, one should mention computer 
tomography (CT): both P P  and CT are concerned with the efficient reconstruc- 
tion of higher dimensional structure from lower dimensional projections, and 
there are interesting possibilities for cross-fertilization. 

Furthermore, there is an amusing connection between PPR and Hilbert's 13th 
problem, whose solution, the celebrated Kolmogorov-Arnold-Kahane theorem 
(see Vitushkin, 1978, page 27 f.), becomes relevant if one should want to do PPR 
with nonlinearly transformed variables. 

2. Why projection pursuit? If we want to check a low-dimensional data 
set for the possible presence of some unspecified, unanticipated structure, then, 
as we all know, the most effective approach is to draw pictures-histograms in 
one or two dimensions, scatterplots in two or three dimensions. 

While it is possible to encode several more dimensions into pictures by using 
time (motion), color, and various symbols (glyphs), the human perceptual system 
is not really prepared to deal with more than three continuous dimensions 
simultaneously. 

The trouble lies with the dimensionality, not with the method of encoding. 
This is shown by the empirical fact that we find it easy to transpose two space 
and one time dimension into three space dimensions (as in kinematic graphics), 
and we can also perform such a transposition, although less easily, with two 
space and one color dimension (as with cartographic maps). 

Procedures for dealing directly with four or more dimensions, coding the fourth 
dimension by color or by time (slicing, masking, cf. Tukey and Tukey, 1981), 
seem to work well only if the data are either clustered in such a way that the 
superb power of color for encoding categorical variables bears fruit, or if the data 
set is essentially three-dimensional, so that slicing the data with regard to one 
variable cuts two-dimensional sections through the space spanned by the other 
three variables. 

Thus, if we want to put the human ability for essentially instantaneous pattern 
discovery to good use with four and higher dimensional data, we should first 
reduce the dimensionality. For obvious reasons, we shall usually want to look 
first a t  the projections onto the spaces spanned by one, two or three of the 
coordinates. But it seems that few people muster the patience and concentration 
for a careful scrutiny of all (i)and (g )  scatterplots of pairs or triples of variables, 
if the dimension d is larger than about 10 or 7, respectively. 

If we want to consider arbitrary one- to three-dimensional linear projections, 
the problem gets even worse. When we rotate a point cloud in three-space in 
order to view its two-dimensional projections, then the "interesting" features 
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often are recognizable only over a relatively narrow range of "squint angle" 
(Tukey and Tukey, 1981, page 215). In our experience, a rotation angle of about 
10" to 20" may be typical, but for example the infamous planes produced by the 
random number generator RANDU are visible only in a range narrower than 5" 
(see Figure 2.1). This generator has the property that any three consecutively 
generated uniform pseudo-random numbers satisfy xn+2 - 6xn+1+ 9xn = O(mod 
I), and thus the triplets (x,, x,+~, x,+~)all lie on 15 parallel planes through the 
unit cube. 

A crude order-of-magnitude estimate based on a squint angle of 10" suggests 
that we need to look at about lod-I one-dimensional projections of d-dimensional 
data, and a t  something like 102d-4 two-dimensional projections. The fastest way 
for doing so is to rotate smoothly from one projection to the next (this is less 
tiring and quicker, since we do not have to reoriept ourselves in each new 
projection), and then we may inspect about one such projection per second. Thus, 
a reasonably complete visual search in four dimensions (a "Grand Tour" in the 
sense of Dan Asimov) takes about three hours. It is evident that an exhaustive 
visual search. is out of the question if d exceeds 4. Unless we are willing to rely 
on happy serendipity, we need an automated procedure that ferrets out projec- 
tions likely to be of interest to the data analyst. This raises the problem of how 
to characterize "interestingness" in a numerical fashion. 

Unfortunately, the squint angle argument applies also to machine search; we 
cannot hope that automated exhaustive search will carry us more than two or 
three dimensions beyond the limits set by human endurance. 

Perhaps, more modestly, we should regard P P  as a method to increase the 
likelihood of finding interesting projections. 

randu: rotation 0 degrees randu: rotation -5 degrees 
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3. Some concepts and definitions. We observe a sample, but we really 
are concerned with elucidating an underlying structure. Thus, it is conceptually 
convenient to separate P P  into an "abstract" version which operates on 
d-dimensional probability distributions (mostly densities) and a "practical" ver- 
sion that is applied to samples (i.e. empirical measures or "point clouds"). The 
two versions might be identical, but often the abstract version will work on 
smooth distributions only; so, in order to translate it into a practical one we must 
insert a suitable smoother a t  an appropriate place. For notational convenience, 
we shall use random variable terminology. The letter X shall be used indiscrim- 
inately for a point cloud, that is, an n-tuple of points (xl, - ..,x,) in IRd, or for a 
random variable with values in LRd. By ave(X) we shall equally, indiscriminately 
denote either the sample mean ( l ln )  C xi or the expectation E(X).  Initially, we 
shall be concerned exclusively with the abstract version and shall postpone 
sampling questions. 

A linear projection from IRd to IRk is any linear map A, or k X d matrix of 
rank k: 

Z = AX, X E  IRd, Z E IRk. 

We speak of an orthogonal projection if the row vectors of A are orthogonal to 
each other and have length 1. 

If X is a d-dimensional random variable with distribution F, then Z = AX is 
a k-dimensional random variable with distribution FA.If k = 1, A reduces to a 
row vector aT, and we use lower case letters Fa, etc. 

In passing, we note that any d-dimensional distribution is uniquely character- 
ized by its one-dimensional projections Fa.This follows trivially from the fact 
that F is uniquely determined by its characteristic function + and that the 
characteristic function +, of the one-dimensional projection Fa in direction a 
equals the section of + along the same direction: 

(3.1) ~ e +(ta). ~+a(t) = ( = ~ ~ ~ ~ ) 

By definition, P P  searches for a projection A maximizing (or minimizing) a 
certain objective function or projection index &(FA). We are specifically interested 
not only in absolute, but also in local, extrema. While Q is a functional on the 
space of distributions on IRk, we find it more convenient also here to use random 
variable terminology and, by abuse of notation, to write Q(X) and &(AX) instead 
of Q(F) and, &(FA) .  Primarily, we shall be concerned with one-dimensional 
projections, and for obvious representational reasons we shall rarely want to go 
beyond three-dimensional projections. 

11. Projection pursuit applied to point clouds-abstract version. 

4. A classification of projection indices. We single out a few classes of 
objective functions according to their invariance properties. For simplicity, we 
consider only one-dimensional orthogonal projections, but the ideas generalize. 

In the following, Z is a real random variable, while s, t are (nonrandom) real 
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numbers. We distinguish three classes of objective functions Q: 

CLASS I. Location-scale equivariance: 

CLASS11. Location invariance, scale equivariance: 

CLASS111. Affine invariance: 

We note that the absolute difference of two Class I functionals is a Class I1 
functional: 

I Qf (2)- IQf'(z)= Q I I ( ~ ) ,  

and the quotient of two Class I1 functionals is of Class 111: 

Let X be a d-dimensional random variable or point cloud. We note that both 
the mean vector p = ave(X1 and the principal components, i.e. the eigenvaluel 
eigenvector representation of the covariance matrix Z = ave((X- p)(X - p)T], 
can be captured by P P  methods as follows. 

EXAMPLE4.1. Let Q = ave. This is Class I functional; Q(aTX) = ave(aTX] 
with 11 a 11 = 1 is maximized by a,, = p/II p 11, and the value a t  the maximum is 
&(a%) = 11 p 11. Hence we may define the d-dimensional mean p via P P  as 
a,,Q(aoTX). 

EXAMPLE4.2. Let Q be the standard deviation, that is, 

with 11 a 11 = 1.This Q is a Class I1 functional; the maximum value of this objective 
function is the largest singular value of X (i.e. the square root of the largest 
eigenvalue of Z), and it is reached a t  any eigenvector belonging to this eigenvalue. 
The other eigenvalues and eigenvectors can be found successively by restricting 
a to the orthogonal component of the space spanned by the previously found 
eigenvectors. 

Class I functionals are one-dimensional location estimators, and P P  with a 
Class I functional QI will yield a kind of d-dimensional location estimator in a 
manner analogous to Example 4.1. We said "kind of" because the resulting 
estimator in general is neither uniquely defined nor location equivariant. In 
somewhat more detail this works as follows. Let X be given. Assume that a,, E 
LQd, with 11 a. 11 = 1, maximizes QI(aTX). Put T(X) = a,,QI(aoTX). 
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PROPOSITION The functional T is uniquely defined and location equivar- 4.3. 

iant for the translation family generated by X :  


T ( X  + t )= T ( X )+ t for all t E JRd, 

iff  there is a p E JRd such that 

(4.1) Q1(aT(X- p ) )  = 0 for all a E JRd, 

and then T ( X ) .  = p. Condition (4.1) holds in particular if X is centro-symmetric 
about p (i.e. if X - p and - (X - p )  have the same distribution). 

PROOF.If X is centro-symmetric about p, then Z = aT(X- p)  is symmetric 
about 0, and 

which establishes the last assertion of the proposition. 

Condition (4.1) is sufficient; if it holds, then 


= QI(aT(X- p ) )  + aT(p+ t )  

which is maximized for a = at = ( p  + t ) l 11 p + t 1 1 .  Then QI(aT(X + t ) )  = 
11 p + t 11, and it follows from T ( X  + t )  = atQI(aT(X + t ) )  = p + t that T is 
translation equivariant. 

Conversely, if T is translation equivariant, put p = T ( X ) .Take an arbitrary, 
but fixed value t E JRd and let at = T ( X  + t)lll T ( X  + t )  II = ( p  + t ) l I1 p + t 1 1 .  
Then 

On the other hand, 

supaQr(aT(X+ t ) )= QI(aT(X + t ) )  

Hence QI(aT(X- p ) )  = 0. Since t was arbitrary, at can be any arbitrary unit 
vector, and it follows that (4.1) holds. 

Clearly, if (4.1) holds, then it also follows that T is uniquely defined on the 
translates of X ,  namely T ( X  + t )= p + t. O 

Actually, QI = ave is the only location functional leading to a translation 
equivariant estimator in dimensions d > 1. This was proved by Critchlow (1981, 
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unpublished) and independently by Fill and Johnstone (1984). Similarly, Q11 = 
(standard deviation) is the only scale functional leading to an affine equivariant 
estimator of a dispersion matrix, see Fill and Johnstone (1984). 

5. What is an "interesting" projection? We cannot expect universal 
agreement on what constitutes an "interesting" projection. A projection in which 
the data separate into distinct, meaningful clusters would certainly be interesting. 
But there are also interesting features that are not of the distinct cluster type 
(e.g. an edge, or jump of density, a t  the boundary of some region). Rather than 
trying to identify the kind of features we might regard as potentially interesting, 
we should perhaps better begin by trying to understand why people have had 
some degree of success with certain specified techniques. 

5.1 Principal components and other Class 11approaches. The prevalent class- 
ical approach is to reduce dimensions by the method of principal components: 
calculate the eigenvalues and eigenvectors of the covariance or correlation matrix, 
and project the data orthogonally into the space spanned by the eigenvectors 
belonging to the largest eigenvalues. Often, these projections show interesting 
structure. Why? There seem to be a t  least two, loosely related reasons. 

First, if a population is an aggregate of several clusters, then these can become 
individually visible only if the separation between clusters is larger than the 
internal scatter of the clusters. Thus, if there are only a few clusters, the leading 
principal axes will tend to pick projections with good separations. Of course, 
principal components can go astray, either if there are too many isotropically 
distributed clusters (compare the Friedman-Tukey, 1974, example with clusters 
a t  the corners of a regular simplex), or if there are meaningless variables with a 
high noise level. 

The second reason is more germane to principal component analysis performed 
on correlation matrices. Assume that we have an intrinsic structure describable 
by a few (unobservable) variables, and that we observe many, possibly differently 
scaled (linear) functions of these variables, with independent random noise added. 
Then principal component analysis tends to act as a variation reducing technique 
(not unlike the sample mean), relegating most of the random noise to the trailing 
components, and collecting the systematic structure into the leading ones. 

Principal components are quite sensitive to outliers (see, e.g. Devlin, Gnana- 
desikan and Kettenring, 1981), and while sometimes the outliers are part of the 
structure to be described, one sometimes would prefer to set them aside. This 
might be achieved by using the P P  version of principal components (see Example 
4.2) with a robust Class I1functional as projection index. See Chen and Li (1981) 
and Li and Chen (1981). 

5.2 C h s  111approaches. When drawing scatterplots and other graphs, we 
usually locate and scale the picture so that it nicely fills the available space (see 
for example the explicit recommendations of Cleveland and McGill, 1984). This 
may indicate that visual interestingness is an affine invariant notion. The 
argument does not extend to quantitative aspects: the "judged association" of 
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scatterplots is not invariant (cf. Cleveland, Diaconis and McGill, 1982), and we 
usually carry along the eliminated location/scale information in numerical form, 
namely as marginal annotations of the graphs. But in any case, it suggests to 
separate off location/scale and to investigate the affine invariant aspects in 
separation. 

Therefore, I shall from now on concentrate on Class I11 functionals. 
Below, I shall adduce heuristic arguments to the effect that a projection is less 

interesting the more nearly normal it is. Intuitively, the central limit theorem 
says that convolution makes distributions more normal, hence the convolution 
of two distributions should be more normal (and less interesting) than the less 
normal among the two convolution factors. In other words, it is desirable that 
the projection index Q satisfies the following requirements: 

Q should be affine invariant (= Class 111),and if X and Y are 
(5.1) independent random variables with finite variances, then Q(X + Y) 

5 max(Q(X),Q(Y)). 

Some heuristic arguments that interestingness goes together with nonnormal-
ity, are as follows. 

A multivariate distribution is normal, iff all of its one-dimensional 
projections are normal (this is one of the well-known characterizations 
of multivariate normality). So all of them are equally (un-)interesting. 

In particular, if the least normal projection is normal, we need not look 
at any other projection. 

For most high-dimensional point clouds most low-dimensional projec-
tions are approximately normal. This statement has recently been made 
precise by Diaconis and Freedman (1984). See also Figure 5.1, which 
compares a random projection of the corners of a seven-dimensional cube 
with a symmetrized normal sample. 

corners  o f  7-cube 7-d n o r m a l ,  s y m m e t r i z e d  
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NOTE. Diaconis has pointed out that PP generalizes from Euclidean space 
to more general groups and their quotient spaces. Naturally, on a compact group 
the place of the least interesting distribution is taken by the uniform one. 

All examples of functionals satisfying (5.1) I know of are of the form 

where h is monotone increasing function, and S1, S2are scale functionals 
(= Class 11) satisfying 

(5.3) S:(X + Y) IS:(X) + S:(Y), (subadditivity), 

and 

(5.4) S;(X + Y) r S;(X) + Si(Y), (superadditivity), 

respectively, when X and Y are independent random variables. Property (5.1) 
then follows easily from the well-known inequality 

valid for arbitrary positive real numbers. 
We first give three examples of sub- and superadditive scale functionals. All 

are closely related to f-divergency, see Cziszar (1967). 

EXAMPLE5.1. Let c, be the mth cumulant of X: 

(5.6) c, = (d/idt)"log(E(eitX)), 

and let 

(5.7) S1(X) = I C, 1 'Im, m L 2. 

Then S: is subadditive. This follows from the Minkowski inequality and the fact 
that c, is an additive functional. 

EXAMPLE5.2. Let 

be the inverse Fisher information, then Si is superadditive. This superadditivity 
is intuitively evident from the remark that S$(X) + Si(Y) is the asymptotic 
variance of the sum of two asymptotically efficient location estimators based on 
X and Y, respectively, while S;(X + Y) is the asymptotic variance of the best 
estimator based on X + Y. For a formal proof, see Blachman (1965). 

EXAMPLE5.3. Let 

be exponential Shannon entropy, then Si is superadditive. For a proof, see 
Blachman (1965). 
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This yields the following three examples of projection indices satisfying (5.1). 

EXAMPLE5.4. Standardized absolute cumulants: 

In particular, for m = 3 we obtain (absolute) skewness, for m = 4 (absolute) 
kurtosis. 

EXAMPLE5.5. Standardized Fisher information: 

EXAMPLE5.6. Standardized negative Shannon entropy: 

It is straightforward to see that in all three examples Q(X) r 0, with equality 
if X is normal. In Example 5.4, this follows trivially from the fact that the higher 
cumulants of the normal distribution are 0. In Example 5.5, we note that Q can 
be rewritten as 

where 4 is a normal density with the same mean and variance as f. In Example 
5.6, we can rewrite Q with the same 4 as 

and Q(X) r 0 follows from Jensen's inequality. In fact, in the last two examples 
(but not in Example 5.4), Q(X) = 0 conversely implies that X i s  normal. 

More generally, if Q is any functional satisfying (5.1), and if XI, . . . ,X,, are 
independent copies of any random variable X with finite variance, then (5.1) 
implies by induction 

and if Q is weak-star lower semicontinuous, it follows by passing to the limit that 

(5.16) Q(N) = Q(X), 

where N is a normal random variable. 
Note that any Q satisfying (5.1) essentially amounts to a test statistic for 

testing normality. According to Ferguson (1961), skewness and kurtosis (Example 
5.4) are most powerful for testing normality against the presence of outliers. A 
sample version of Example 5.5 amounts in essence to a test statistic for testing 
whether the score function -ft/f is a straight line, compare (5.13). Finally, if we 
write the standardized Shannon entropy of Example 5.6 in the form (5.14) and 
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expand it into a Taylor series in powers of A =f -4,we obtain the approximations 

If we approximate further by taking a finite Riemann sum and by inserting a 
histogram type density estimate for f, we see that the entropy index asymptoti- 
cally amounts to a X2-test statistic used for testing normality. 

In passing, I should mention that we have found empirically that all the usual 
test statistics for normality (Kolmogorov-Smirnov, Durbin-Watson, etc.) give 
about the same results when they are used as projection indices; that is, they 
tend to find very similar directions. Major exceptions to this rule are skewness 
and kurtosis, which are very outlier sensitive. Incidentally, this makes one wonder 
about the quartimax and oblimax method of factor analysis (see Harman, 1967), 
which are, essentially, PP-methods based on kurtosis. Though, only test statistics 
that increase under deconvolution (i.e. satisfy (5.1)) are conceptually satisfactory 
for finding least normal projections. 

Finally, I should remark that the original Friedman-Tukey (1974) index 
mentioned in the introduction can be described in our framework as being a 
finite sample version of the "abstract" projection index. 

g ( X )  = a,(X) s f 2  dx, 

where a, stands for the a:trimmed standard deviation, and f is the density of X. 
This is a Class I11 functional, but it is not a consistent test of normality; it 
reaches its minimum at  a density of the form (a - bx2)+, for some constants 
a>O,  b > 0 .  

To obtain a sample version of (5.18), we replace a, by the sample a-trimmed 
standard deviation G,, and the density f by the kernel estimate 

(5.19) f(x) = ( l ln )  C k(x - xi) 

with 

k(x) = 1/R for I x I < R/2, 
= 0 otherwise. 

Note that 

We obtain-apart from a proportionality factor-the original 1974 Friedman- 
Tukey index 

(5.21) 2, Xi,, (R - I xi - xj I )+ 

if we take R to be 0.1 times the sample standard deviation in the direction of the 
largest principal component of the unprojected point cloud. Clearly, this choice 
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of R is not affine equivariant, and thus (5.21) is not of Class I11 (but this was 
changed in later implementations; personal communication by Friedman). To 
obtain a Class I11 sample version of (5.18), we might determine R in an equivariant 
fashion from the projected sample (e.g. by putting R = cia, with say c = 0.1). 

6. Two-sample PP and robust multivariate estimators. In this section 
it is more convenient to state the results in terms of finite samples X and Y in 
d-space. We already mentioned that the classically best discriminating hyper- 
plane between X and Y can be found by doing PP with the 2-sample t-statistic 
as the projection index, or equivalently, by maximizing the projection index 

sdv{aT(XU Y)) ' 

where sdv is the standard deviation. Note that (6.1) is a monotone function of 
the usual 2-sample t-statistic. 

This might be robustified for example by replacing the sample average by the 
median, and the standard deviation by the median absolute deviation: 

med(aTX)- med(aTY) 
mad(aT(XU Y)) 

However, I would not advocate using this expression as it stands: I con-
jecture that a modified denominator, for example mad((aTX - med(aTX)) U 
(aTY- med(aTY))1, should lead to better results. 

The supremum over a of (6.2) (or of one of its variants) provides a very robust, 
affine invariant measure of the separation between X and Y. We can put this to 
good use for measuring the outlyingness of an observation xi in a single sample 
X: put 

This can be used to construct highly robust multivariate estimators. Let w(r) 
be a strictly positive, decreasing function of r z 0, such that rw(r) is bounded, 
and define weights 

Then the statistic 

is an affine equivariant estimator of location, and 

is an affine equivariant estimator of the scatter matrix. If the points of X are in 
general position (i.e. no d + 1of them lie in a (d - 1)-dimensional hyperplane) 
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then the breakdown point of both T, and C, is 

(6.6) E*  z (n - 2d + 1)/(2n - 2d + 1) 

(with equality in dimensions d >2, and c* = l/2 for d = 1or 2). This result is due 
to Donoho (1982); similar results (for infinite samples) have been obtained 
somewhat earlier by Stahel (1981). 

PROOF(Donoho). We must show that T, and C, remain bounded (and 
nonsingular) unless we add a t  least n - 2d + 1bad points to the sample X, where 
n is the size of X. Let Y be a set of m bad points, then so long as m < n, 

hence 

supl,l,l I med(aT(XU Y)j I 5 maxi Ixi I. 
A similar argument gives 

~ u p ~ , ~ , ~ m a d { a ~ ( XU Y)) r 2 maxi I xi I .  
For a lower bound on the mad, note that mad(aT(X U Y)) = 0 only if strictly 
more than half of the elements of aT(X U Y) have the same value, that is, only 
if more than (n  + m)/2 points of X U Y lie in some (d - 1)-dimensional 
hyperplane. Since no more than d points from X can lie in such a plane by 
assumption, the number of contaminating points then must satisfy d + m > 
(n + m)/2. So if X is in general position and n z m + 2d, 

inffy=minflal=lmad(aT(XU Y)) >0. 

These inequalities imply after some further algebra that the weights wi of the 
points in X are bounded away from 0 (uniformly in Y), and that the wi I xi I and 
the w; I y; I are bounded, so long as n z m + 2d. Hence T, and C, are bounded 
and nonsingular, and this implies the inequality (6.6). O 

These PP estimators are the only known estimators of multivariate location 
and scatter that are both affine equivariant and whose breakdown point ap- 
proaches l/2 in large samples. 

7. Questions of k-dimensional projections. In the preceding sections we 
were concerned with one-dimensional projections of d-dimensional point clouds. 
The same approach, maximizing some functional Q of distributions in IBk,applies 
to higher dimensional projections, but it has drawbacks: 

(1) computations get harder (maximization over approximately kd instead of 
d variables); 

(2) it yields only a k-dimensional subspace, but for interpretational reasons, 
one would prefer to get an ordered set of k directions. 

Therefore, stepwise approaches are attractive; fix the first k - 1 directions 
found and optimize among projections onto the k-space spanned by the fixed 
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k - 1plus one additional variable direction. But also this does not give a sequence 
of directions, merely a nested sequence of subspaces. Note that orthogonal 
directions do not suffice, the interesting directions may be oblique to each other. 
(The approach can of course also be reversed: find first a k-dimensional projec- 
tion, then reduce dimensions one by one.) 

If we want to find a sequence of directions, recursive approaches are more 
appealing: find the most interesting direction, remove the structure that makes 
this direction interesting, and iterate. In essence, this amounts to P P  density 
estimation (PPDE, Friedman, Stuetzle and Schroeder, 1984); so long as we are 
concerned not with the sample, but with the population version, we should better 
call it P P  density approximation (PPDA). We postpone this problem until 
Section 11. 

It is conceivable that stepwise approaches may miss structure that a direct 
k-dimensional search would find easily. After all, it is an empirical fact that a 
two-dimensional scatterplot may show striking features that would pass unno- 
ticed in any one-dimensional projection. For example, holes (empty regions) are 
very hard to discover in low-dimensional projections. We have no reason to 
assume that machine search behaves much differently from visual search, and 
Example 14.1 below may give analytical support to this assertion. 

8. What next? After one has found some "interesting" projections, what 
does one do next? Typically, the next action is one of the following list (part (1) 
corresponds to the operational paradigm behind Friedman and Tukey (1974) and 
the PRIM-9 system; parts (2) and (3) correspond roughly to PPC and PPR): 

(1) Identify clusters, isolate them and investigate them separately. 
(2) Identify clusters and locate them (i.e. replace them by, say, their center 

and classify points according to their membership to a cluster). 
(3) Find a parsimonious description (separate structure from random noise in 

a nonparametric fashion). 

Clearly, there is a floating boundary between the entries in this list, and the 
details need investigation. 

We note that often a cluster can be characterized by the location of its center 
and the scatter matrix of the points forming the cluster. 

Assume for the moment that we would like to optimize a P P  procedure for 
finding clusters. Then, even in the relatively simple case of (possibly overlapping) 
elliptical clusters with different centers and covariance structures, it is far from 
clear how we should optimize the choice of objective functions Q. In view of 
Section 5, the problem of detecting such clusters may be formalized as a test of 
normality whose power is optimized for a particular class of nonparametric 
alternatives. Clearly, P P  here infuses some new ideas and problems into the old 
field of nonparametric tests. On the other hand, determining the shape of the 
(elliptical) clusters is a problem of robust estimation of scatter matrices (with a 
twist-we typically will want to concentrate on a minority of the points and 
ignore the majority). 

If the clusters are not nearly elliptical, a description in terms of scatter 
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matrices becomes inappropriate. For nonconvex clusters (e.g. curved and twisted 
"sausages") low-dimensional projections should still be able to reveal the presence 
of structure, but they may be of little help in unravelling it, mainly because each 
projection may show confusing overlapping effects. Compare also Tukey (1982). 

In such cases, a separation of structure from noise ("sharpening") may reduce 
overlapping effects and thus help with the interpretation. It recently has emerged 
that PP methods are able to yield one of the most general and theoretically 
clearest approaches to sharpening by deconvoluting the underlying distribution 
(see Section 18). But first we must discuss some representational problems. 

111. Projection pursuit regression (PPR)-abstract version. 

9. Projection pursuit regression. Let (X, Y )be a pair of random vari- 
ables such that X is IRd-valued and Y is R-valued. The problem is to estimate 
the response surface 

f(x) = E(Y I X = x) 

from n observations (XI, Yl), . . . ,(x,, Y,) of (X, Y). A straightforward nonpara- 
metric approach to this problem consists in estimating f(x) from the values Yi 
observed a t  the k points Xi nearest to x, for example, by fitting a constant, or 
preferably, a linear function to them and evaluating it a t  x. Under weak assump- 
tions this approach will estimate f(x) consistently, compare Stone (1977). Though, 
if d is large, the curse of dimensionality causes trouble, and it may be more 
attractive to approximate the response surface by a sum of ridge functions: 

(9.1) f(x) - CY gj(ajTx). 

Note that ridge functions may be thought of as generalizations of linear 
functions: like the latter they are constant on hyperplanes. 

The projection pursuit estimation and approximation process, proposed by 
Friedman and Stuetzle (1981), works roughly as follows. Assume that we already 
have determined the first m - 1terms, that is, vectors aj and functions gj of one 
real variable. Let 

(9.2) ri = Yi - CY-l gj(a,?Xi) 

be the residuals of this approximation. Let a E Rd be any unit vector, plot ri 
against aTXi, and fit a smooth curve g to this scatterplot (Figure 9.1; see Section 
20 for an explanation of the wiggly appearance of the curve). 

Calculate the sum of the squared residuals relative to this g: 

and then minimize this sum over all possible choices of directions a. The 
minimizing direction a, and the corresponding smooth function g, then are 
inserted as the next term into the approximating sum (9.2). The process is 
iterated until the improvement in (9.3) becomes small. 

This procedure has some definite advantages over its closest competitors: in 
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distinction to nearest neighbor techniques it is able to ignore information-poor 
variables, and it appears to be much better suited to the representation of 
intrinsically smooth response surfaces than methods based on recursive parti- 
tioning. Once the directions a, and the functions g, have been determined, the 
right-hand side of (9.1) can be evaluated very quickly. 

On the other hand, there are considerable technical difficulties. In particular, 
the choice of the bandwidth of the smoother used to find g is very delicate. The 
sampling theory of PPR is practically nonexistent. The interpretations of the 
individual terms in the approximating sum is far from easy. 

We shall disregard sampling aspects for the moment (they shall be taken up 
again in Section 20) and shall concentrate on the problem of approximating a 
given function f by an expansion of the form (9.1). 

First, in what sense should the series (9.1) converge to f? If the dimension is 
d > 1, then the summands are not integrable in IRd,unless they are zero almost 
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everywhere, so LZ-convergence makes sense only with respect to some bounded 
(i.e. probability) measure P in Q ~ .  

r 

To fix the idea, we may take P to be the uniform measure on the unit cube. 
Then it is clear that every square integrable function can be approximated in the 
sense of (9.4); indeed, the ordinary Fourier series expansion off  is of this form. 

Assume that we already have determined projection directions a, and functions 
gj for j < m. Now we want to determine a,, g, such that the norm 

of the residual function 

is decreased by the maximum possible amount when g,(alflx) is added to the sum 
in (9.6). 

For fixed a,, the solution is given by 

where the conditional expectation is taken under the assumption that X is 
distributed according to the probability measure P. 

PROOFOF (9.7). Let E' denote the conditional expectation, given a z X  = z. 
Then, among functions g of z, E'[(r - g)']-and thus E[(r - g)2]-clearly is 
minimized for g, = E'(r). 0 

Moreover, we note that E[(r - g,)'] = E(r2)- E(g$), so the residual norm is 
decreased most by choosing the direction a, so that it maximizes the marginal 
norm E(gk). 

Under mild smoothness conditions, E(g$) depends continuously on the direc- 
tion a,, so a standard compactness argument yields that a maximizing direction 
a, exists. 

By induction, the residual r = r, in (9.6) satisfies 

It follows in particular that the maximal marginal norm E(g$) of the residual r, 
converges to 0 as m +cn. 

This does not imply that E(r$) +0. However, since E (  Ig, I ) +0, it follows 
that the Fourier transform &(s) = E(r,exp(isTX)) converges uniformly to 0 (to 
show this, use a relation similar to (3.1)). It is evident from this remark that in 
order to prove L2-convergence, it would suffice to establish a tightness condition 
on the frequency spectrum of r,. Since projections are a kind of smoothers, they 
should not dissipate spectral power to higher frequencies; therefore, I conjecture 
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that no additional regularity conditions are needed, but I do not have a proof. 
The successive approximations 

to f need not be the best possible for m summands. In general, it is possible to 
improve the fit by various versions of backfitting: omit one of the earlier sum- 
mands g,, determine the best possible replacement and then iterate. Usually, the 
directions a, are kept constant in this process. 

10. Exact representations by finite sums. It is of some interest to know 
the structure of the approximating sums (9.1), or in other words, of the functions 
f that can be represented exactly by a finite sum of ridge functions. For simplicity 
we shall only consider the case d = 2, and shall assume that all functions are 
smooth (but this assumption could easily be removed). A detailed discussion can 
be found in Diaconis and Shahshahani (1984). 

First, we note that the representation 

need not be unique. For example, in view of the identity 

f(x) = x1x2 has infinitely many representations as a sum of two ridge functions. 
This example involves a homogeneous polynomial, and, in fact, this kind of 

indeterminacy is the only one that occurs. More precisely, assume that f has two 
representations: 

where (al, ..., a,) are pairwise linearly independent two-dimensional vectors, 
and similarly for (bl, . . .,b,). Standardize these vectors such that I(aj I( = I(bk 11 
= 1, and that the first nonzero component of each a,, bk is >0. 

PROPOSITION For each j, either g, 10.1 (Diaconis and Shahshahani (1984)). 
is a polynomial, or else there is a k such that a, = bk, and g, - hkis a polynomial. 

PROOF.It suffices to show that if 

(10.4) C?g,(a?x) = 0, 

with (al, .. . , a,) pairwise linearly independent vectors, then gl is a polynomial. 
Note that a ridge function can be annihilated by taking the derivative in direction 
of the ridge. Thus, if we successively annihilate all summands in (10.4), except 
the first one, by taking derivatives in directions orthogonal to a2, a3, . . .,a,, we 
find that the (n - 1)st derivative of gl must vanish identically. Hence gl is a 
polynomial of degree In - 2.0 

There are functions that cannot be represented in the form (10.1) for any 
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finite n. A simple example is 

Obviously, this function is not annihilated by any finite number of directional 
derivatives, hence it cannot be of the form (10.1). 

IV. Projection pursuit density approximation (PPDA). 

11. Multiplicative expansions. If f is not just any arbitrary function on 
IRd, but a probability density, then additive decompositions in the style of Section 
9 are distinctly awkward; the approximating sums will not be probability densities 
themselves, unless one resorts to ad hoc tricks like taking positive parts, trun- 
cating (to ensure L1 integrability) and rescaling. Multiplicative decompositions 
make more sense; approximate f by 

(11.1) fk(x) = II! hj(aflh 

Note that if k = d, and if the aj are linearly independent, then (11.1)amounts 
to approximating f by a product density (in a coordinate system with basis 
vectors a,). 

If k < d, then (11.1)is not integrable; therefore, we shall prefer representations 
of the form 

where fo is some standard probability density in Q~ (e.g. a normal density with 
the same mean and covariance as f ). 

We can view the sequence (h,, a,) either "synthetically," as a sequence of 
modifications to fo that builds up the structure off, such that fk converges to f in 
a suitable sense. Or else, we can view it "analytically," as a sequence of modifi- 
cations to f that strips away its structure, step by step, such that the sequence 

converges to fo for k +m. 

The two viewpoints bear some relevance on how we would determine the 
sequence (hj, a,). Assume that 6 is a metric in the space of probability densities, 
and that we have determined the sequence (h,,a,] up to k - 1.Then according 
to the synthetic viewpoint, we would want to determine hk, ak such that 6(f, fk) 
is minimized; according to the analytic viewpoint, we would minimize 6(fo, f-k). 
The two approaches are dual to each other: they interchange the roles of fo and 
off. Unless we use special properties of either fo or f (e.g. that fo is normal or 
that f is estimated from a sample), it therefore suffices to treat one of the two 
approaches. 

The quality of the approximation of a density g to a density f can be measured 
in many ways, for example by 

(1) relative entropy 

(11.4) 
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(which is not a metric, since E(f, g) # E(g, f )  in general), or by 

(2) Hellinger distance 

or by any other measure of distance beween distributions (Prohorov distance, 
bounded Lipschitz metric, etc.). Since we are working with densities, we naturally 
are more attracted to discrepancy measures defined in terms of the densities like 
(1) or (2) than to the other distances mentioned. 

Among the two, (1) is particularly well suited to an additive decomposition of 
log f, implicit in (11.2) and (11.3), while (2) is better matched to an additive 
decomposition of Jf,incidentally, this is another way of forcing positivity of the 
approximating densities 

fdx) = (2! hj(a7x)l2. 

12. Properties of relative entropy. We begin with a few auxiliary lem- 
mas. 

Let 

p(z) = lhz2 for l z (  5 1 ,  

= 121 - lh for ( z l  > 1. 

We note that p is a continuously differentiable convex function. 

LEMMA12.1. For z > -1, we have 

PROOF.Let f (z)  = z - log(1 + z) - l/zp(z). We have r(0) = 0, and we easily 
verify that 

z(1 - 2)
f ' (z)  = 

2(1 + 2) 
for 121 < 1, 

Hence Y(z) < 0 for -1 < z < 0, and P ( z )  > 0 for z > 0, thus f reaches its 
(unique) minimum at  z = 0, and the assertion of the lemma follows. O 

LEMMA12.2. Relative entropy satisfies 

and in particular, E(f, g) = 0 implies f = g a.e. 
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PROOF. Put h =g/f - 1.Then 

-S 10g($)f dx = S [h - log(1 + h)]f dx - S hf dx. 

Since J hf dx = Jf,o (g  - f )  dx 5 0, the inequalities of the lemma follow from 
Lemma 12.1. Evidently, E(f, g) = 0 implies p(g/f - 1) = 0 a.e. [f]; thus g/f = 1 
a.e. [f], and since both g and f are probability densities this implies f =g a.e. O 

I n  particular, if E(f, f,,) +0, then f, --+ f in L1 and in Hellinger distance. 

PROOF. The first inequality is trivial: 

( J f - G ) 2 ~ ~ J f - G l ~ J f + G ~ = I f - g l ~  
For the second, see Kemperman (1969, page 162 f.) and Cziszar (1975). 0 

We note that relative entropy is invariant under arbitrary affine transforma- 
tions (in fact, under arbitrary differentiable 1-1-transformations). 

The following lemma must be known, but I do not have a ready reference. 

LEMMA 12.4. Assume that f is a probability density in Q~ which has finite 
second moments. Then the best Gaussian approximation g to f in the relative 
entropy sense (i.e. minimizing E(f, g)) has the same mean vector and the same 
covariance matrix as f. 

PROOF. In view of the preceding remark we may, without loss of generality, 
choose the coordinate system such that f has mean zero and unit covariance 
matrix. Let go be the standard normal density in IRd, and let g be any other 
normal density in IRd, with mean vector p and covariance matrix Z. Then 

= l/z[log(det Z) + Ef((x- p ) T ~ - l ( ~- p)) - Ef(xtx)] 

= lh [log(det 2 )  + tr(Z-') + pTz-lp - dl. 

Assume that the eigenvalues of Z-I are XI, .. . , Ad, then this can be written 

= '/z[Z(Xi - log Xi) + pTZ-lp - dl. 

Since X - log X r 1, with equality iff X = 1, we obtain that E(f, g) - E(f, go) > 0, 
unless g = go.0 

13. Minimization of relative entropy and PPDA. In this section we 
are concerned with optimal choices for the directions a, and the functions hj in a 
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decomposition of the form (11.1). Assume first that k = d, and that the aj are 
fixed, linearly independent vectors in IRd. Without loss of generality, we may 
choose a, to be the j th  coordinate direction (cf. the remark preceding Lemma 
12.4). In other words, the problem is to find the best approximation of a given 
density f by a product density 

where the gj are one-dimensional probability densities. 
The quality of the approximation shall be measured in terms of relative 

entropy 

(13.2) E(f, g) = $ [log f - x log gj(xj)]f (XI, .., x,) dxl .. . dxd. 

Clearly, this is minimized by minimizing 

-Z$ log[gj(xj)]f(*l, . . ., xd) dxl . . . dxd, 

which in turn is minimized by minimizing 
,. 

for each j separately, where 
,. 

is the j th marginal density. 
Since E(fj, gj) > 0 for gj # f j ,  (Lemma 12.2), the minimum clearly is achieved 

for the unique choice gj = fj. 
We note in passing that this calculation a t  the same time proves that Shannon 

entropy 

Esh(f) = -$ lodf  )f dx 

satisfies 

E ~ h ( f )5 2E~h(f j )  

with equality iff f = n fj. 
By letting the d directions aj vary simultaneously and freely, we may more 

generally approximate f by the best possible product density (we do not worry 
about existence of the minimum for the moment): 

I do not know whether the best possible approximation can be constructed by 
a stepwise approach: first solve a minimum problem to find al and gl, then find 
az and gz, and so on. 

But iff is an exact product density in a suitable coordinate system, then there 
is a stepwise approach that will sequentially pick up the unique factors one a t  a 
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time. This is a nontrivial result involving some subtle properties of entropy; it 
shall be sketched briefly. 

The basic idea is to use the "analytic" approach mentioned in Section 11.Let 
g be the Gaussian density with the same mean and covariance matrix as f, and 
let fa, ga be the one-dimensional marginal densities of aTx under f and g, 
respectively. Note that the relative entropy E(fa, ga) coincides with the Class I11 
projection index of Example 5.6: 

Now assume that f is a product density; without loss of generality we may 
assume that 

f(x) = II fi(xj), 

and that the factors are ordered such that 

Since &(fa) satisfies condition (5.1) of Section 5.2, it follows that Q reaches its 
maximum at a factor off, namely at the factor fl with the largest relative entropy 
E(fl, gl). We divide out this factor and replace f by 

We note that f * still is a product density, 

with f T =gl, f? = h for j > 1. Thus, i f f  * is subjected to the same process as f 
before, the second factor f2 is picked out, and so on. If E(fi, gj) = E(fi+l, gj+l) > 
0, the order in which the two factors are picked is indeterminate. The process 
continues until f *  = g is a Gaussian density, that is, until either j = d or 
E(h,  gj) = 0, whichever happens first. 

Now let g be any approximation to any given density f in LQd. We shall attempt 
to improve the approximation by replacing g(x) by a density of the form 
g*(x) =g(x)h(xl), where h depends on the first coordinate only. Note that g and 
g* determine the same conditional density given xl. An intuitively attractive 
choice thus is to determine h such that the one-dimensional marginal distribution 
g1 of g* in direction xl agrees with the corresponding marginal distribution fi of 
f. We shall show that this indeed minimizes relative entropy. 

LEMMA13.1. Relative entropy E(f, g*) is minimized by the choice 

h(xl) = f i ( ~ l ) l g l ( ~ i ) ,  

where fl and gl are the marginal densities off and g in direction xl, and for this 
choice, the decrease in relative entropy is 
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PROOF. We note that the conditional density, given xl, is the same for g and 
g*, however hl is chosen, namely 

g(' I x1) =g(x1, .,xn)lgl(xl) 

and that gl(xl)h(xl) is the marginal density of g*. Thus 

E(f, g*) = S (log f - log g*)f dx 

= S [log f(*  1x1) - log g(* I XI)+ log fl(xl) - log(gl(xl)h(xl))lf dxl 

which is minimized by minimizing 

and this clearly is achieved by the unique choice glh = fl. This proves the first 
assertion of the lemma. The second assertion follows from a composition of the 
above expression for E(f, g*) for the two choices h = 1and h = fl/gl: 

According to this lemma, if we may choose the projection direction a, then the 
largest possible improvement in relative entropy that can be achieved through 
replacing g(x) by g*(x) =g(x)h(aTx) clearly is obtained with 

where fa and g, are the marginal densities off  and g, respectively, in direction a, 
and where a is chosen such that it maximizes 

At the moment, we are not concerned with the existence of such an a;  maximi- 
zation within a prescribed relative error tolerance is in fact good enough for all 
practical purposes. 

The procedures just described shall be referred to as the projection pursuit 
density approximation (PPDA) method: find a direction a maximizing E(f,, g,), 
and then either replace f by f*  = fg,/f, ("analytic" version) or g by g* = gf,/g, 
("synthetic" version), then iterate. 

We already noted that this procedure (with a normal g) finds the least normal 
projection of f, and if the analytic version is applied iteratively to a product 
density, it will find the unique factors in descending order of nonnormality. It 
would be interesting to know (cf. Section 15) whether these results remain true 
if we interchange the arguments and maximize E(g,, fa) instead. 

14. Maximum marginal relative entropy. Let f and g be arbitrary 
probability densities in IRd, and let fa and g, be their one-dimensional marginals 
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in direction a. We can use maximum marginal relative entropy 

as a measure of discrepancy between f and g. Clearly, because of Lemma (13.1), 
E*(f, g) I E(f, g). Since any distribution is uniquely characterized by the family 
of its marginals in all possible directions (Cram&-Wold theorem), we have 

If we determine a sequence (g'k') of successive approximations by PPDA, then 
each step decreases E(f, g'k') by E*(f, g(k)). Hence, if E(f, g) < 03, it follows 
that E*(f, g'k') converges to 0; in fact, for any given c > 0, it takes at most 
k = E(f, g)/& steps to reach a density g'k' for which E*(f, g(k)) 5 c. 

Maximum marginal relative entropy is a concept' particularly well suited to 
PPDA, and it deserves a closer study. Let f be a fixed probability density in R ~ ,  
while g'k' is an arbitrary sequence of probability densities. 

Clearly, E(f, g'k') +0 implies E*(f, g'k') -0. The reverse implication is false. 

EXAMPLE Let f be the uniform density in the unit disk 14.1 (D. Critchlow). 
in R ~ :  

f(x) = 1 / ~for 11 x 11 < 1, 

= 0 otherwise. 

Let g'k' be defined as follows (see Figure 14.1): 

g 'k ' (~)= l / ~for l/k I 11 x 11 < 1, 

= 2/7r for 11 x 11 < l/k, XI > 0, 

= 0 otherwise. 

It is straightforward to verify that E(f, g'k') = CQ for all k, but E*(f, g'k') +0. 
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We shall now derive a few consequences of E*-convergence. 

PROPOSITION14.2. E*(f, g'k)) --+ 0 implies that g'k' + f in the sense of 
weak(-star) convergence of the underlying measures. 

Basically, this proposition is just another version of the Cramkr-Wold theorem, 
compare Billingsley (1968, page 48). 

PROOF. In view of Lemma 12.3, E*(f, g'k') --+ 0 implies that the marginal 
densities show uniform L1-convergence: 

SUPa J 1 fa - gp) 1 --+ 0. , 

Hence, the characteristic functions $, of the one-dimensional marginals converge 
uniformly, and since the characteristic function $ of any density f is related to 
the characteristic functions +, of its marginals fa by 

it follows that the characteristic functions I)'~'of g'k' converge uniformly to $: 

1 $(ta) - t,b'k'(ta>I 5 SUP, J 1 fa - g ~ 1 .  

Hence, g'k' converges weakly. O 

I conjecture that iff is sufficiently smooth, so that its characteristic function 
is absolutely integrable, and if the sequence g'k' is generated by PPDA, then 
g'k' --+ f uniformly and in the L1-sense. Actually, I can prove only a very special 
case (which however covers the intended applications). 

PROPOSITION Assume that the density f in Qd can be deconvoluted with 14.3. 
a Gaussian component: 

f = f * 4 ,  

where f is some density, and 4 is normal N(0, a21d) for some a2  > 0. Let g"' be 
the normal density with the same mean and covariance matrix as f. Then the 
sequence g'k), k = 0, 1, 2, . . . , of approximating densities, constructed by PPDA 
(Section 13, end), converges uniformly and in L1 to f. 

PROOF. Each of the g'k' allows a deconvolution g'k' = g'k' * 4. This shall be 
proved by induction. It clearly is true for k = 0, since g"' itself is Gaussian. 

Thus, assume that g =g'k' can be deconvoluted. For the following argument it 
is essential that 4 is a product density in all orthogonal coordinate systems, so 
that convolutions can be calculated coordinate-wise. Choose the coordinate 
system such that ak is the first coordinate direction. Then the product represen- 
tation of g: 
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induces a product representation of g: 

with g(* I xl) and gl(xl) being obtained by convoluting their barred counterparts 
with (d - 1)-and one-dimensional normal densities, respectively. If in the last 
displayed equation we replace g1 by f1 = fl * N(0, a2), we obtain the desired 
deconvolution of the next term g'k+l'. 

The characteristic functions of g'k' and g'k' are related by +'k'(s) = 
$'k'(s)exp_(-a2 I s 1 2/2), and a similar relation holds for the characteristic func- 
tions +, + off, f ,hence + and +'k' are majorized by exp(-a2 I s 1 2/2). 

It follows that the +'k' are absolutely integrable, and g'k' can therefore be 
represented as 

g'k'(X) = (5+)-d S+'k'(S)e-isTx
ds. 

Since the sequence +'k' converges uniformly, it now follows from the majorization 
of + and +'k' that the sequence 

I Ax) - g'*'(x) I 5 (2n)-d J I +(s) - +'*'(s) I ds 

converges uniformly to 0. L1-convergence follows trivially (from uniform conver- 
gence and tightness of the weakly convergent sequence of measures g'k'). O 

V. Projection pursuit density estimation (PPDE). 

15. General remarks on PPDE. It is straightforward to change the 
PPDA procedures of Section 13 into density estimators. The first step is to 
standardize the point cloud in Q~ by an affine transformation so that it is 
centered at  0 and that its covariance matrix is the unit matrix. Note that this 
raises some very delicate robustness questions; our density estimates should not 
be sensitive to occasional outliers, but they should be able to pick up long tails 
in the underlying distribution. These two requirements are contradictory; we 
lack a rational basis for separating between spurious outliers and genuine long 
tails. But from a pragmatical point of view, we note that all density estimators 
have trouble coping with isolated points in the tails-at best, these points produce 
equally isolated bumps in the estimate, and at worst, (especially if we use adaptive 
cross-validation), they may act as leverage points, messing up the estimate 
elsewhere. So it is probably wise to identify and to set aside such isolated points 
(for example, with the help of the measure (6.3) of outlyingness), and to disregard 
them in the estimation procedures, but to show them as remarkable points in (at 
least some of) the pictures we produce. 

Since it seems to be better if the initial estimate has too heavy tails than if it 
has too light tails, we would seem to have the choice of either using the classical, 
nonrobust mean and covariance matrix together with a Gaussian g"', or else 
robust location and covariance estimates together with a density g"' that is 
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heavier tailed than the Gaussian (but we should not combine a robust covariance 
estimate with a Gaussian g"'). I believe the simpler first version to be good 
enough in most cases. 

The zeroth order density estimate g"' thus ordinarily is the d-dimensional 
standard normal. The approximation steps now can be described as follows. 

Let 

be the current density estimate. 
According to Section 13, we should determine a next direction a = ak+l such 

that it maximizes E(f,, g,), and then put hk+l = fa/ga. 
For a given a, fa is straightforward to estimate: project the sample in direction 

a, yielding zi = aTxi,i = 1, . . . , n, and then calculate a one-dimensional density 
estimate fa based on (zl, . . .,2,). 

The projection g, of the current density estimate is a well-defined quantity, 
and from the point of view of theory does not present any problem. However, we 
may run into trouble with its calculation, in particular since it has to be calculated 
inside a minimization loop. Direct numerical integration almost certainly is too 
slow. There are several appealing Monte Carlo approaches (cf. Friedman, Stuetzle 
and Schroeder 1984). A first one is to replace g by a sample yl, . . ., y, from g, 
and then to estimate g, in the same way as fa. This may not be easy to implement 
(how does one sample efficiently from g?). A second one is to take a random 
sample yl, . . .,y~ from some cleverly chosen distribution with density h'O'(x) in 
R~(for example, a truncated normal one, if outliers have been purged away from 
the original data sample). Put 

and create a histogram with bin width A and value 

4 = (viI ~j - A/2 I aTxi<~j + A/2] 

for the bin with midpoint zj. Then apply a kernel smoother to this histogram to 
obtain the estimate 2,. 

A possibly even more appealing approach is not to maximize E(f,, g,), but 
~ ( f l ; ~ ' ,g?)), where fgk'is a sample version of (11.3), defined as follows. Let 

wi = n: h,(a7xi)-l, 

and create a histogram with bin width A and value 

for the bin with midpoint zj. Then apply a kernel smoother to this histogram 
to obtain the estimate Pik .  This corresponds to the procedure mentioned in the 
last sentence of Section 13. 

We proposed here to use marginal entropy as the criterion to be maximized 
when determining a new projection direction. This certainly is the conceptually 
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purest approach. But it is conceivable that other measures of discrepancy might 
offer advantages from a sampling or computational point of view; the matter 
needs further investigation. 

16. Consistency of PPDE. By reinterpreting some of the results of Sec- 
tion 14, consistency of PPDE is almost trivial to prove. But the proof at the 
same time shows why consistency per se is a rather useless concept. 

Assume that we are given a sample XI, . . .,x, in Q ~ ,  and let 

be the empirical measure. We now apply a spherically symmetric normal kernel 
smoother to obtain the density estimate 

Note that the marginal density fa off  in direction a is obtained by applying the 
one-dimensional kernel N(0, a2) to the projection 

of the original data. 
It follows that if we iterate a PPDE (using relative entropy as the criterion), 

with a Gaussian kernel smoother in the projections, it numerically converges in 
the E*-sense to the d-dimensional kernel estimate f .  

Since f can be deconvoluted with a normal component, it follows from 
Proposition 14.3 that the PPDE converges uniformly and in L1to f, if the number 
of iterations tends to infinity. 

The d-dimensional kernel estimate f* is consistent under very weak assump- 
tions on the true underlying density f if a tends to 0 slowly, while the sample 
size n goes to m. It follows that PPDE is consistent too, provided we iterate it 
enough so that it approximates f sufficiently closely. 

This result is not very helpful, however. After all, the main reason for using 
PPDE is that the sample size is too small for a d-dimensional kernel estimator 
to make sense. We certainly do not intend to iterate the P P  density estimation 
so far that it approximates the latter. The following example may illustrate the 
issue. 

EXAMPLE16.1. Take a sample of size n from the standard normal N(0, I )  in 
d dimensions. Note that a half-and-half mixture of two one-dimensional normal 
densities Jii'(+a, a2) is unimodal for cu 5 a, bimodal otherwise, and that the same 
holds true for a pair of d-variate normal densities N ( fp, a21) with a = I( p (1. 
Thus, we may say that two sample points are merged in the d-dimensional kernel 
estimate (16.2), if their Euclidean distance is 5 2a, and that they are separatec 
otherwise. The expected number of merged point pairs can be calculated as 
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where 

9 = P( (1  Xi - Xj  (1 5 20-1 = x2(2a2) 

is the probability that a specified pair of points is merged. Numerically, we obtain 
with d = 10, a = 0.1 and n = lo6 that m = 0.4. In other words, we have a better 
than even chance that all lo6sample points are separated. The one-dimensional 
marginal estimates (with the same kernel) on the other hand will be quite smooth. 
Note that for one-dimensional estimates a kernel width kn-1/5 minimizes the 
asymptotic mean square error, and that the constant k is such that for n = lo6 
the choice a = 0.1 is close to optimal (see, e.g., Wegman 1972, page 536). 

Note that in this example, the zeroth order PPDA to the underlying density 
is exact, and in the sampling case the starting density g"' already is the best 
PPDE; more generally, if the kth order PPDA g'k' js exact, then there is no 
reason to go much beyond order k in the PPDE g'k', and depending on the sample 
size, it may be preferable to stop much earlier. 

More meaningful consistency results should therefore be concerned with the 
convergence and the speed of convergence of g'k' - g@)+0, for fixed k. 

Since we would not know the true f in practice, we would also need an analogue 
of Mallows C,-statistic, telling us when to stop the projection pursuit approxi- 
mation process. 

VI. Connections to computer tomography. 

17. Fixed projection directions. Computer tomography (CT), just like 
PP, is concerned with the reconstitution of a higher dimensional structure from 
lower dimensional projections. For an introductory survey of CT, see Shepp and 
Kruskal (1978). 

But there are many differences. The most conspicuous one is the absence of a 
search for informative projections in CT. CT aims for an accurate reconstruction 
of a not directly observable two-dimensional density from the set of all one- 
dimensional projections; in practice, one only has a finite, but fairly dense and 
equispaced set of projections, and they are affected by random observational 
errors. In PP, on the other hand, the higher dimensional information is directly 
accessible, but it consists only in a random sample from the density, and the 
latter should be approximated on the basis of a few selected projections of the 
random sample. 

Nevertheless, some of the mathematics is closely related. For example, the 
algebraic reconstruction techniques (Gordon, Bender and Herman 1970), whose 
applications to CT have now been superseded by Fourier techniques, but which 
have advantages if the data is not equispaced, use the same iterative improvement 
techniques as PPR and PPDA. 

The questions of common relevance to both CT and P P  concern, in particular, 
approximations based on a finite number of discrete projections. Assume that we 
are to approximate a density function f in R ~ ,and that we are given m fixed 
directions al ,  . . . ,a,. What is the "best" additive approximation 

(17.1) Ax) = CT hj(ajx), 
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and what is the "best" multiplicative approximation 

to f ?  
Second, given only the projections f j  (i.e. either the conditional expectations 

or the marginal densities) off  in the directions a,, what is the "best" choice of g 
under the side condition that the projections gj of g in the directions a, agree with 
those o f f?  

In each case, the notion of "best" needs to be made precise. For additive 
approximations (17.1), it appears appropriate to formalize "best" so as to mini- 
mize the L2-norm 

(17.3) s (f -d2dp;  . 
for multiplicative approximations (17.2), so as to minimize relative entropy, 

For the second type of problem, we may define the "best" choice of g to be the 
one with the least variability: 

S g2 d P  = min!, 

or the one with the largest entropy 

(17.6) H(g) = -S log(g)g dx = max!. 

Assume that the space M of functions of the form (17.1) is a closed subspace 
of the Hilbert space of square integrable functions. Then (17.1), (17.3) and (17.5) 
are nicely matched up: the solution g is uniquely described by the property that 
it is of the form (17.1) and satisfies gj = f;.. 

Geometrically, this is obvious: 

(1) If g minimizes E(f - g)2 among all functions in M, then f - g IM; this 
orthogonality relation is equivalent to E(f - g 1 ajX) = 0, or gj = f;. for 
j =  l,',. . .,m. 

(2) The orthogonal projection o f f  to M minimizes Eg2 among all functions 
satisfying g, = f j  for j = 1, .. . ,m. 

The relations (17.2), (17.4) and (17.6) are matched up in an analogous fashion. 
Unfortunately, it is not at all clear whether M is closed; see the remark in 

Shepp and Kruskal (1978, page 428), and consult Hamaker and Solmon (1978) 
for a laborious proof in a special case. See furthermore Logan and Shepp (1975) 
and Logan (1975) for a detailed study of the number of terms required in (17.1) 
(in terms of the energy distribution of the Fourier transform f ) .  
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VII. Projection pursuit and time series problems. 

18. Minimum entropy deconvolution as a sharpening tech-
nique. Deblurring and sharpening are ubiquitous problems; just think of how 
to make a sharp picture from a snapshot blurred by camera motion during 
exposure, or of how to improve the sound of a historic phonograph record. Our 
own visual system is surprisingly good at it (this is exploited for example in the 
anti-aliasing techniques of computer graphics: by suitably blurring a staircase 
line we can trick our eyes into reconstructing a sharp straight line). 

Often, the blurring process is known in detail, and deblurring amounts to the 
undoing of a known (not necessarily linear) filter. Here we are interested in the 
other extreme case, where the filter is not known and has to be reconstructed 
together with the underlying process from the dat'a. Already the case of linear 
filters (the only case we are going to consider) amounts to the seemingly 
unsolvable task of factoring an observed process y into a convolution product of 
two unobservable factors: 

where f is the unknown filter which has blurred the underlying process of 
interest x. 

To fix the idea, assume that y is a time series, observed at equidistant points: 
y = (  . . .,~ t ,~ t + i ,. .I .  Thus, 

Yt = Cs fsxt-s, 

and the problem is to find a filter q inverse to f, so that q * y = x. 
These are several conceptually different approaches; a common theme behind 

many of them is to view x as a bottommost, not further reducible causative 
process. More or less, this amounts to assuming that knowing the past values x,, 
r It, does not help you in predicting a future value x,, s > t, and that the future 
values of x do not influence the past values of y, so that f, =0 for s <0. Assuming 
stationarity, the first requirement means that the xt are independent, identically 
distributed random variables, and we shall make the gratuitous assumption that 
they have finite variances. 

Now, for any filter q, we have q * y = (q * f )  * x, so (q * y),, being a linear 
combination of several x,, is more normal than a single xt (in the sense of Section 
5.2). 

Thus, the filter q inverse to f has the property that it produces a least normal 
q * y. Clearly, q is not unique since it can be shifted in time (replace qt by qt-k 
and xt by x ~ + ~ ) ,  and if y is a Gaussian process, then q is completely indeterminate. 

In the PP framework of Section 5.2, we may phrase the problem as fol- 
lows: restrict the maximum length of the filter q to d. Consider the segments 
(yt, yt+1, . .., yt+d-l) of length d as points in EZd. Find a least normal one- 
dimensional projection; the corresponding direction q may be taken as an ap- 
proximation to f-l. 

A concrete application of these notions can be made in geophysics. Donoho 
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(1981) pointed out the usefulness of the considerations of Section (5.1) in a time 
series context, and related them to current work on deconvolution in exploration 
seismology. What geophysicists call "Minimum Entropy Deconvo1ution"-intro- 
duced by Wiggins (1978)-is actually a P P  method in the present sense, with 
kurtosis (not entropy) as a projection index. The point of MED is to recover a 
convolution component which for geological reasons is supposed to be "impulsive" 
or "spiky." Modelling such a component as "non-Gaussian i.i.d." one obtains just 
such impulsive series; and the P P  approach described above is the optimal 
deblurring procedure under that model-if one uses the right projection index. 
In this case it turns out that the right index actually is standardized entropy, 
which the MED nomenclature might have suggested; this results from large- 
sample statistical considerations not employed by Wiggins in naming the method. 

19. A time series version of PPR. For stationary Gaussian processes, or 
more precisely, for processes allowing a harmonic decomposition 

in terms of a process Yx with independent increments, spectrum analysis clearly 
is the approach of first choice; it separates the process into irreducible compo- 
nents. 

For other processes, for example for those generated by the superposition of 
nonsinusoidal periodic wave forms, other approaches may be more appropriate. 
In particular, one might then prefer not to leave the time domain. 

In concrete terms, suppose that the process Xt is of the form 

(19.2) Xt = Cj f;.(t/pj) 

(plus some noise, which we shall ignore for the moment), where p, is the period 
and f;. the shape of the j th  periodic component. The function f;. is assumed to be 
smooth and periodic with period 1. Both pj and f;. are unknown, but we assume 
that each f;. averages to 0over time. 

We note that if the pj are linearly independent over the field of rational 
numbers, then the representation (19.2) is unique, and it is in principle possible 
to extract the j th component by averaging over points spacedp =p, apart; if we 
put 

(19.3) zp,t= avek(Xt+kpl, 

then 

Note that 

so it looks attractive to do projection pursuit with regard to the projection 
operator (19.3) and to search for a periodp maximizing Q(p) = a~e~(Z ; ,~ ) .  
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Unfortunately, this will pick bewilderingly many periods p. Note that Z&,, is 
the same function for all k = 1, 2, . . . ,and if the f i  are nonsinusoidal, they have 
higher harmonics with periods pj//, so every single component f i  will create spikes 
in Q(p) at p = kp,//, for all k r 1and for at least some / 21. 

Without doubt (19.3) provides a nice method for looking a t  the shape of 
periodic components with given periods, and it has been used successfully for 
example in the investigation of circadian rhythms (cf. Enright, 1981). But it is 
far from clear whether projection pursuit with Q as a method for uncovering 
hidden periods is preferable to more conventional methods based on the peri- 
odogram or complex demodulation, which search for periods p that yield large 
values of 

While this latter approach picks up the higher harmonics p =pj//, it ignores 
the spurious subharmonics ( p  = kpj// with k > 1). 

A comparison of the sample versions of these procedures is interesting. For 
every given value of p,  plot Xt against t(mod p). Then fit a smooth curve 2p,tto 
this scatterplot to obtain a nonparametric estimate of Z,,,, (see McDonald, 1982). 
We may compare this to the more traditional periodogram approach, which 
amounts to fitting the two parameters of a sine wave (amplitude and phase) to 
this same scatterplot. 

The periodogram approaches have had an infamous reputation for picking 
spurious periods, because-prior to the book of Blackman and Tukey (1959)- 
people often had not paid enough attention to the sampling properties of (19.5). 
The sampling properties of ave(.@,,j clearly are in need of an equally careful 
scrutiny! 

VIII. Finite sample implementations of PP methods. 

20. Sample versions of PPR. We continue the discussion begun in Sec- 
tion 9. Assume that a response surface 

(20.1) f(x) = E(Y I X = x ) ,  

where X is d-dimensional and Y is one-dimensional, is to be estimated from a 
sample ((q,yi)) of size n, and is to be approximated by a finite sum of estimated 
ridge functionsf 

(20.2) f(x) - CT 2j(eyx). 

The "engineering" aspects of constructing a good sample version of PPR are 
very delicate, even more so than what transpires from the published account 
(Friedman and Stuetzle, 1981), and they deserve a careful discussion. 

The situation is analogous to that in numerical spectrum analysis. There the 
real progress did not come through mathematical statistics in the usual sense, 
that is, through consistency and asymptotic normality proofs, but through a 
mathematically much more primitive, qualitative and quantitative understanding 
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(see Blackman and Tukey, 1959). This understanding involved recommendations 
for balancing bias against variability; one realized that one was not estimating 
the "true" spectrum, but a smoothed version thereof, using estimates that had 
an approximate X2-distribution with so-and-so many degrees of freedom. It was 
even more important to sort out the pitfalls due to aliasing and leakage, and to 
learn how to avoid them; some pitfalls were discovered and remedied only 
recently, e.g. the masking effect due to (small) gross errors (Kleiner, Martin and 
Thomson, 1979). 

In PPR, we are only a t  the beginning of this process. The main problem is 
that we are trying to estimate a response surface in a setup where there are not 
enough observations to do it through a direct, d-dimensional nonparametric 
approach. Unless we are very careful, the PPR estimate may get trapped by 
(local) overfitting in one of the low-order kj, thereby invalidating subsequent 
approximations. It may also go astray by including too many terms. 

The PPR fitting procedure begins by simultaneously determining a direction 
6and a smooth function 2, such that the square average of the residuals 

becomes least possible (in a sense to be made precise). Then the process is 
repeated iteratively, with the residuals ri in place of the yi. It suffices to describe 
the first step of the algorithm. 

According to (9.7), the "ideal" function g, for a given direction a, is the 
conditional expectation 

(20.4) g(x) = E ( Y  I aTX= z). 

For the following discussion it may help to decompose yi and write it as 

Even i f f  and g are smooth and the random error ui is small, the yi may show a 
seemingly erratic behavior when plotted against zi = aTxi, because of the varia- 
bility of f in directions other than a. Overfitting a t  this stage would have 
catastrophic consequences with regard to subsequent iterative steps. 

For each fixed choice of a, the smoothing algorithm proposed by Friedman 
and Stuetzle (1981) makes several passes over the data: 

0. Sort the data in ascending order of the zi = aTxi. 
1. Smooth the scatterplot of yi against zi by running medians of three. 
2. Estimate response variability at each zi by the average squared residual of 

a locally linear fit with constant bandwidth. 
3. Smooth these variance estimates by a fixed bandwidth moving average. 
4. Smooth the sequence obtained by pass (1)by locally linear fits with variable 

bandwidths determined by the smoothed local variance estimates obtained 
in (3). 

A few comments on the different passes follow. 
Pass (1)is suggested by robustness; it intends to safeguard against isolated 

gross errors in the ui. On the other hand, note that long tails in the distribution 
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of f(X) - g(aTX) may indicate that the choice of a can be improved. The two 
requirements conflict with each other; attempts at being robust may cost us 
dearly in terms of our ability to find good projection directions. 

Furthermore, we remark that for any d-tuple of points xi, we may find a 
direction a projecting them to the same z = aTxi. Thus, whenever there are r or 
more large positive outliers anywhere among the y-observations, any median 
smoother with span < 2r + 1will break down in some direction a. By the way, it 
is not at all evident without a detailed analysis of the algorithm whether 
breakdown of the smoother here implies that the direction a is unjustly preferred 
or spurned later on. Either alternative may have unpleasant consequences. 

In the passes (2) to (4), observation i is omitted from the local averaging 
process determining the smoothed value &i). The main purpose of this cross- 
validation approach is to protect against overfitting. L~cally linear, rather than 
locally constant, fitting helps to reduce the bias near the ends of the sequence; 
note that a large bias in some of the fitted values 2(aTxi) may foul up the search 
for the best 6. 

The entire curve-fitting process (passes (0) to (4)) occurs within a minimization 
loop; it is vitally important that it be done in a fast fashion. It appears that 
locally linear fits with constant weights 0ver.a fixed number of neighboring points 
are an excellent compromise between quality and speed; the smoothed value at 
z i + ~can be obtained by a simple (numerically unstable, but adequate) updating 
procedure from that at zi. The main drawback of the constant weights is that the 
smoothed curve remains locally wiggly (cf. Figure 9.1). Actually, one runs several 
(say three) concurrent smoothers with different, but constant bandwidths in (2) 
and (3), and then for (4) chooses the one which gives the smallest local variability. 

For the minimization, a simple and crude Rosenbrock algorithm is used. Note 
that-except for purposes of interpretation-it does not matter very much if a 
particular direction a, is determined inaccurately, later terms in the sum (20.2) 
will correct it. 

Since, especially in the earlier stages of the procedure, the as yet unexplained 
part of the variability off can be quite large, and the smoothing is correspondingly 
unreliable, backfitting is much more important than in the abstract version: 
readjust the earlier summands gj (and possibly also the 6,) in turn, keeping the 
other m - 1contributions to (20.2) fixed. 

The fine-tuning of the PPR algorithms so far has been based on the intuition 
of the originatars and on uncontrolled experimentation. For further progress, we 
would need some crude theories explaining the quantitative after-effects of 
particular choices for the bandwidth of the smoothers and some theoretical 
insight into stopping rules. 

Consistency results may be mathematically interesting, but will be rather 
irrelevant. The point (already made earlier in this section) is that PPR is designed 
to work in the transient region where the sample size n is not yet large enough 
for direct d-dimensional nonparametric regression. The only way a consistency 
result can become useful is when it is accompanied by a realistic estimate of the 
approximation error of CT S,($'X) relative to the best approximation to f of the 
form IT gj(a,?x), and which is valid for sample sizes smaller than those needed 
for direct d-dimensional approaches. 



472 P. J. HUBER 

21. How many points? If the sample is too small, PP methods are likely 
to find spurious features. The paper by Day (1969) gives a graphical demonstra- 
tion of this fact (with 50 points in 10 dimensions). 

We begin with the one-dimensional case. There, the Kolmogorov distance 
between the true and the empirical cumulative satisfies the asymptotic bound 

For the sample sizes and probability values of interest, the bound practically 
is an equality. In particular, we shall mark down that for n = E - ~ ,  

Note, for example, that the two distributions NjO, 1)and ?AN(-0.8, 0.36) + 
1/2N(O.8, 0.36), whose densities are shown in Figure 21.1, have Kolmogorov 
distance 0.046. This example would seem to suggest that we should aim for values 
of c = 0.05 and smaller, that is, for sample sizes in the range n = E-' = 400 and 
larger. 

Mixture o f  N o r m a l s  
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In higher dimensions, a theorem of Vapnik and Cervonenkis (1971) gives the 
following upper bound for the Kolmogorov distance in the worst projection: 

(21.3) 11 = P(sup,sup, I Fa,,(t) - Fa(t) I r el I4@(d, 2n)e-"2/s. 

Here, Faand Fa,,, respectively, are the one-dimensional cumulatives of the true 
and of the empirical measure in w ~ ,projected in direction a, and 

is the maximal number of regions into which d-space can be divided by n 
hyperplanes. 

For d 5 n/2 we have 

(this is shown by majorizing the sum by a geometric series), and 

by Stirling's formula. Hence 

and thus 

This inequality improves the ones given by Vapnik and Cervonenkis (1971), 
who had used the bound @(n, d )  r nd + 1.In particular, it implies that for each 
c >0, the probability 11 of large deviations can be made arbitrarily small, uniformly 
in d, by choosing nld sufficiently large. (This result is due to Ken Alexander.) 
This is about the weakest sufficient condition for consistency we could reasonably 
have hoped for. 

The bad news is that the values of nld turn out to be very large. For example, 
with 11 = 0.27 and e = 0.05 we obtain from (21.8) that nld = 40000. Even if this 
value should t&rn out to be too pessimistic by two or'ders of magnitude (as a 
comparison with the value nld = 400 appropriate for d = 1 perhaps might 
suggest), the sample sizes required still would be much larger than the ones one 
usually encounters with multivariate data sets. 

Perhaps the practical conclusion to be drawn is that we shall have to acquiesce 
to the fact that P P  will in practice uncover not only true but also spurious 
structure, and that we must weed out the latter by other methods, for example 
by validating the results on different data sets. 
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DISCUSSION 

JEROMEH. FRIEDMAN 

Stanford University 

I congratulate Professor Huber for an excellent survey of Projection Pursuit 
methods. Putting together the diverse research in this area into a coherent 
prospective is a difficult and challenging task. This paper represents an important 


